Step |
Hyp |
Ref |
Expression |
1 |
|
1cvratex.b |
|- B = ( Base ` K ) |
2 |
|
1cvratex.s |
|- .< = ( lt ` K ) |
3 |
|
1cvratex.u |
|- .1. = ( 1. ` K ) |
4 |
|
1cvratex.c |
|- C = ( |
5 |
|
1cvratex.a |
|- A = ( Atoms ` K ) |
6 |
|
simp1 |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> K e. HL ) |
7 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
8 |
1 3 7 4 5
|
1cvrco |
|- ( ( K e. HL /\ X e. B ) -> ( X C .1. <-> ( ( oc ` K ) ` X ) e. A ) ) |
9 |
8
|
biimp3a |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> ( ( oc ` K ) ` X ) e. A ) |
10 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
11 |
10 4 5
|
2dim |
|- ( ( K e. HL /\ ( ( oc ` K ) ` X ) e. A ) -> E. q e. A E. r e. A ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
12 |
6 9 11
|
syl2anc |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> E. q e. A E. r e. A ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
13 |
|
simp11 |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. HL ) |
14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. OP ) |
16 |
13
|
hllatd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. Lat ) |
17 |
|
simp12 |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> X e. B ) |
18 |
1 7
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
19 |
15 17 18
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` X ) e. B ) |
20 |
|
simp2l |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> q e. A ) |
21 |
1 5
|
atbase |
|- ( q e. A -> q e. B ) |
22 |
20 21
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> q e. B ) |
23 |
1 10
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ q e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) |
24 |
16 19 22 23
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) |
25 |
1 7
|
opoccl |
|- ( ( K e. OP /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) |
26 |
15 24 25
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) |
27 |
|
simp2r |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> r e. A ) |
28 |
1 5
|
atbase |
|- ( r e. A -> r e. B ) |
29 |
27 28
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> r e. B ) |
30 |
1 10
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B /\ r e. B ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) |
31 |
16 24 29 30
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) |
32 |
1 7
|
opoccl |
|- ( ( K e. OP /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B ) |
33 |
15 31 32
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B ) |
34 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
35 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
36 |
1 34 35
|
op0le |
|- ( ( K e. OP /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B ) -> ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
37 |
15 33 36
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
38 |
|
simp3r |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) |
39 |
1 2 4
|
cvrlt |
|- ( ( ( K e. HL /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) |
40 |
13 24 31 38 39
|
syl31anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) |
41 |
1 2 7
|
opltcon3b |
|- ( ( K e. OP /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) <-> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
42 |
15 24 31 41
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) <-> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
43 |
40 42
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
44 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
45 |
13 44
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. Poset ) |
46 |
1 35
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. B ) |
47 |
15 46
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) e. B ) |
48 |
1 34 2
|
plelttr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. B /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) ) -> ( ( ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) -> ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
49 |
45 47 33 26 48
|
syl13anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) -> ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
50 |
37 43 49
|
mp2and |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
51 |
2
|
pltne |
|- ( ( K e. HL /\ ( 0. ` K ) e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) -> ( ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> ( 0. ` K ) =/= ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
52 |
13 47 26 51
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> ( 0. ` K ) =/= ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
53 |
50 52
|
mpd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) =/= ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
54 |
53
|
necomd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) =/= ( 0. ` K ) ) |
55 |
1 34 35 5
|
atle |
|- ( ( K e. HL /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) =/= ( 0. ` K ) ) -> E. p e. A p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
56 |
13 26 54 55
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> E. p e. A p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
57 |
|
simp3l |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) |
58 |
1 2 4
|
cvrlt |
|- ( ( ( K e. HL /\ ( ( oc ` K ) ` X ) e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) /\ ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) |
59 |
13 19 24 57 58
|
syl31anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) |
60 |
1 2 7
|
opltcon3b |
|- ( ( K e. OP /\ ( ( oc ` K ) ` X ) e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) -> ( ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) <-> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
61 |
15 19 24 60
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) <-> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
62 |
59 61
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) |
63 |
1 7
|
opococ |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
64 |
15 17 63
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
65 |
62 64
|
breqtrd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) |
66 |
65
|
adantr |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) |
67 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> K e. HL ) |
68 |
67 44
|
syl |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> K e. Poset ) |
69 |
1 5
|
atbase |
|- ( p e. A -> p e. B ) |
70 |
69
|
adantl |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> p e. B ) |
71 |
26
|
adantr |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) |
72 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> X e. B ) |
73 |
1 34 2
|
plelttr |
|- ( ( K e. Poset /\ ( p e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B /\ X e. B ) ) -> ( ( p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) -> p .< X ) ) |
74 |
68 70 71 72 73
|
syl13anc |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( ( p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) -> p .< X ) ) |
75 |
66 74
|
mpan2d |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> p .< X ) ) |
76 |
75
|
reximdva |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( E. p e. A p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> E. p e. A p .< X ) ) |
77 |
56 76
|
mpd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> E. p e. A p .< X ) |
78 |
77
|
3exp |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> ( ( q e. A /\ r e. A ) -> ( ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) -> E. p e. A p .< X ) ) ) |
79 |
78
|
rexlimdvv |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> ( E. q e. A E. r e. A ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) -> E. p e. A p .< X ) ) |
80 |
12 79
|
mpd |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> E. p e. A p .< X ) |