| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cvratex.b |
|- B = ( Base ` K ) |
| 2 |
|
1cvratex.s |
|- .< = ( lt ` K ) |
| 3 |
|
1cvratex.u |
|- .1. = ( 1. ` K ) |
| 4 |
|
1cvratex.c |
|- C = ( |
| 5 |
|
1cvratex.a |
|- A = ( Atoms ` K ) |
| 6 |
|
simp1 |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> K e. HL ) |
| 7 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 8 |
1 3 7 4 5
|
1cvrco |
|- ( ( K e. HL /\ X e. B ) -> ( X C .1. <-> ( ( oc ` K ) ` X ) e. A ) ) |
| 9 |
8
|
biimp3a |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> ( ( oc ` K ) ` X ) e. A ) |
| 10 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 11 |
10 4 5
|
2dim |
|- ( ( K e. HL /\ ( ( oc ` K ) ` X ) e. A ) -> E. q e. A E. r e. A ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
| 12 |
6 9 11
|
syl2anc |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> E. q e. A E. r e. A ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
| 13 |
|
simp11 |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. HL ) |
| 14 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. OP ) |
| 16 |
13
|
hllatd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. Lat ) |
| 17 |
|
simp12 |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> X e. B ) |
| 18 |
1 7
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` X ) e. B ) |
| 20 |
|
simp2l |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> q e. A ) |
| 21 |
1 5
|
atbase |
|- ( q e. A -> q e. B ) |
| 22 |
20 21
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> q e. B ) |
| 23 |
1 10
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ q e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) |
| 24 |
16 19 22 23
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) |
| 25 |
1 7
|
opoccl |
|- ( ( K e. OP /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) |
| 26 |
15 24 25
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) |
| 27 |
|
simp2r |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> r e. A ) |
| 28 |
1 5
|
atbase |
|- ( r e. A -> r e. B ) |
| 29 |
27 28
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> r e. B ) |
| 30 |
1 10
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B /\ r e. B ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) |
| 31 |
16 24 29 30
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) |
| 32 |
1 7
|
opoccl |
|- ( ( K e. OP /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B ) |
| 33 |
15 31 32
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B ) |
| 34 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 35 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 36 |
1 34 35
|
op0le |
|- ( ( K e. OP /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B ) -> ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
| 37 |
15 33 36
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) |
| 38 |
|
simp3r |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) |
| 39 |
1 2 4
|
cvrlt |
|- ( ( ( K e. HL /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) |
| 40 |
13 24 31 38 39
|
syl31anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) |
| 41 |
1 2 7
|
opltcon3b |
|- ( ( K e. OP /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B /\ ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) e. B ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) <-> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
| 42 |
15 24 31 41
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) .< ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) <-> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
| 43 |
40 42
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
| 44 |
|
hlpos |
|- ( K e. HL -> K e. Poset ) |
| 45 |
13 44
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> K e. Poset ) |
| 46 |
1 35
|
op0cl |
|- ( K e. OP -> ( 0. ` K ) e. B ) |
| 47 |
15 46
|
syl |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) e. B ) |
| 48 |
1 34 2
|
plelttr |
|- ( ( K e. Poset /\ ( ( 0. ` K ) e. B /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) ) -> ( ( ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) -> ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
| 49 |
45 47 33 26 48
|
syl13anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( 0. ` K ) ( le ` K ) ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) /\ ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) -> ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
| 50 |
37 43 49
|
mp2and |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
| 51 |
2
|
pltne |
|- ( ( K e. HL /\ ( 0. ` K ) e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) -> ( ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> ( 0. ` K ) =/= ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
| 52 |
13 47 26 51
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( 0. ` K ) .< ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> ( 0. ` K ) =/= ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) ) |
| 53 |
50 52
|
mpd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( 0. ` K ) =/= ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
| 54 |
53
|
necomd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) =/= ( 0. ` K ) ) |
| 55 |
1 34 35 5
|
atle |
|- ( ( K e. HL /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) =/= ( 0. ` K ) ) -> E. p e. A p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
| 56 |
13 26 54 55
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> E. p e. A p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) ) |
| 57 |
|
simp3l |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) |
| 58 |
1 2 4
|
cvrlt |
|- ( ( ( K e. HL /\ ( ( oc ` K ) ` X ) e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) /\ ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) |
| 59 |
13 19 24 57 58
|
syl31anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) |
| 60 |
1 2 7
|
opltcon3b |
|- ( ( K e. OP /\ ( ( oc ` K ) ` X ) e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) e. B ) -> ( ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) <-> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
| 61 |
15 19 24 60
|
syl3anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( ( oc ` K ) ` X ) .< ( ( ( oc ` K ) ` X ) ( join ` K ) q ) <-> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) ) |
| 62 |
59 61
|
mpbid |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) ) |
| 63 |
1 7
|
opococ |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 64 |
15 17 63
|
syl2anc |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( oc ` K ) ` X ) ) = X ) |
| 65 |
62 64
|
breqtrd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) |
| 66 |
65
|
adantr |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) |
| 67 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> K e. HL ) |
| 68 |
67 44
|
syl |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> K e. Poset ) |
| 69 |
1 5
|
atbase |
|- ( p e. A -> p e. B ) |
| 70 |
69
|
adantl |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> p e. B ) |
| 71 |
26
|
adantr |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B ) |
| 72 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> X e. B ) |
| 73 |
1 34 2
|
plelttr |
|- ( ( K e. Poset /\ ( p e. B /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) e. B /\ X e. B ) ) -> ( ( p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) -> p .< X ) ) |
| 74 |
68 70 71 72 73
|
syl13anc |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( ( p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) /\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) .< X ) -> p .< X ) ) |
| 75 |
66 74
|
mpan2d |
|- ( ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) /\ p e. A ) -> ( p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> p .< X ) ) |
| 76 |
75
|
reximdva |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> ( E. p e. A p ( le ` K ) ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ) -> E. p e. A p .< X ) ) |
| 77 |
56 76
|
mpd |
|- ( ( ( K e. HL /\ X e. B /\ X C .1. ) /\ ( q e. A /\ r e. A ) /\ ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) ) -> E. p e. A p .< X ) |
| 78 |
77
|
3exp |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> ( ( q e. A /\ r e. A ) -> ( ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) -> E. p e. A p .< X ) ) ) |
| 79 |
78
|
rexlimdvv |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> ( E. q e. A E. r e. A ( ( ( oc ` K ) ` X ) C ( ( ( oc ` K ) ` X ) ( join ` K ) q ) /\ ( ( ( oc ` K ) ` X ) ( join ` K ) q ) C ( ( ( ( oc ` K ) ` X ) ( join ` K ) q ) ( join ` K ) r ) ) -> E. p e. A p .< X ) ) |
| 80 |
12 79
|
mpd |
|- ( ( K e. HL /\ X e. B /\ X C .1. ) -> E. p e. A p .< X ) |