Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
ax-1ne0 |
|- 1 =/= 0 |
3 |
|
cxpef |
|- ( ( 1 e. CC /\ 1 =/= 0 /\ A e. CC ) -> ( 1 ^c A ) = ( exp ` ( A x. ( log ` 1 ) ) ) ) |
4 |
1 2 3
|
mp3an12 |
|- ( A e. CC -> ( 1 ^c A ) = ( exp ` ( A x. ( log ` 1 ) ) ) ) |
5 |
|
log1 |
|- ( log ` 1 ) = 0 |
6 |
5
|
oveq2i |
|- ( A x. ( log ` 1 ) ) = ( A x. 0 ) |
7 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
8 |
6 7
|
syl5eq |
|- ( A e. CC -> ( A x. ( log ` 1 ) ) = 0 ) |
9 |
8
|
fveq2d |
|- ( A e. CC -> ( exp ` ( A x. ( log ` 1 ) ) ) = ( exp ` 0 ) ) |
10 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
11 |
9 10
|
eqtrdi |
|- ( A e. CC -> ( exp ` ( A x. ( log ` 1 ) ) ) = 1 ) |
12 |
4 11
|
eqtrd |
|- ( A e. CC -> ( 1 ^c A ) = 1 ) |