Description: 1 divides any integer. Theorem 1.1(f) in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | 1dvds | |- ( N e. ZZ -> 1 || N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
2 | 1 | mulid1d | |- ( N e. ZZ -> ( N x. 1 ) = N ) |
3 | 1z | |- 1 e. ZZ |
|
4 | dvds0lem | |- ( ( ( N e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) /\ ( N x. 1 ) = N ) -> 1 || N ) |
|
5 | 3 4 | mp3anl2 | |- ( ( ( N e. ZZ /\ N e. ZZ ) /\ ( N x. 1 ) = N ) -> 1 || N ) |
6 | 5 | anabsan | |- ( ( N e. ZZ /\ ( N x. 1 ) = N ) -> 1 || N ) |
7 | 2 6 | mpdan | |- ( N e. ZZ -> 1 || N ) |