Step |
Hyp |
Ref |
Expression |
1 |
|
1ex |
|- 1 e. _V |
2 |
1
|
snid |
|- 1 e. { 1 } |
3 |
|
ax-1ne0 |
|- 1 =/= 0 |
4 |
|
ax-1cn |
|- 1 e. CC |
5 |
|
snssi |
|- ( 1 e. CC -> { 1 } C_ CC ) |
6 |
4 5
|
ax-mp |
|- { 1 } C_ CC |
7 |
|
elsni |
|- ( x e. { 1 } -> x = 1 ) |
8 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
9 |
|
oveq12 |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) ) |
10 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
11 |
9 10
|
eqtrdi |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = 1 ) |
12 |
7 8 11
|
syl2an |
|- ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) = 1 ) |
13 |
|
ovex |
|- ( x x. y ) e. _V |
14 |
13
|
elsn |
|- ( ( x x. y ) e. { 1 } <-> ( x x. y ) = 1 ) |
15 |
12 14
|
sylibr |
|- ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) e. { 1 } ) |
16 |
7
|
oveq2d |
|- ( x e. { 1 } -> ( 1 / x ) = ( 1 / 1 ) ) |
17 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
18 |
16 17
|
eqtrdi |
|- ( x e. { 1 } -> ( 1 / x ) = 1 ) |
19 |
|
ovex |
|- ( 1 / x ) e. _V |
20 |
19
|
elsn |
|- ( ( 1 / x ) e. { 1 } <-> ( 1 / x ) = 1 ) |
21 |
18 20
|
sylibr |
|- ( x e. { 1 } -> ( 1 / x ) e. { 1 } ) |
22 |
21
|
adantr |
|- ( ( x e. { 1 } /\ x =/= 0 ) -> ( 1 / x ) e. { 1 } ) |
23 |
6 15 2 22
|
expcl2lem |
|- ( ( 1 e. { 1 } /\ 1 =/= 0 /\ N e. ZZ ) -> ( 1 ^ N ) e. { 1 } ) |
24 |
2 3 23
|
mp3an12 |
|- ( N e. ZZ -> ( 1 ^ N ) e. { 1 } ) |
25 |
|
elsni |
|- ( ( 1 ^ N ) e. { 1 } -> ( 1 ^ N ) = 1 ) |
26 |
24 25
|
syl |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |