| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1ex |
|- 1 e. _V |
| 2 |
1
|
snid |
|- 1 e. { 1 } |
| 3 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 4 |
|
ax-1cn |
|- 1 e. CC |
| 5 |
|
snssi |
|- ( 1 e. CC -> { 1 } C_ CC ) |
| 6 |
4 5
|
ax-mp |
|- { 1 } C_ CC |
| 7 |
|
elsni |
|- ( x e. { 1 } -> x = 1 ) |
| 8 |
|
elsni |
|- ( y e. { 1 } -> y = 1 ) |
| 9 |
|
oveq12 |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) ) |
| 10 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 11 |
9 10
|
eqtrdi |
|- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = 1 ) |
| 12 |
7 8 11
|
syl2an |
|- ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) = 1 ) |
| 13 |
|
ovex |
|- ( x x. y ) e. _V |
| 14 |
13
|
elsn |
|- ( ( x x. y ) e. { 1 } <-> ( x x. y ) = 1 ) |
| 15 |
12 14
|
sylibr |
|- ( ( x e. { 1 } /\ y e. { 1 } ) -> ( x x. y ) e. { 1 } ) |
| 16 |
7
|
oveq2d |
|- ( x e. { 1 } -> ( 1 / x ) = ( 1 / 1 ) ) |
| 17 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 18 |
16 17
|
eqtrdi |
|- ( x e. { 1 } -> ( 1 / x ) = 1 ) |
| 19 |
|
ovex |
|- ( 1 / x ) e. _V |
| 20 |
19
|
elsn |
|- ( ( 1 / x ) e. { 1 } <-> ( 1 / x ) = 1 ) |
| 21 |
18 20
|
sylibr |
|- ( x e. { 1 } -> ( 1 / x ) e. { 1 } ) |
| 22 |
21
|
adantr |
|- ( ( x e. { 1 } /\ x =/= 0 ) -> ( 1 / x ) e. { 1 } ) |
| 23 |
6 15 2 22
|
expcl2lem |
|- ( ( 1 e. { 1 } /\ 1 =/= 0 /\ N e. ZZ ) -> ( 1 ^ N ) e. { 1 } ) |
| 24 |
2 3 23
|
mp3an12 |
|- ( N e. ZZ -> ( 1 ^ N ) e. { 1 } ) |
| 25 |
|
elsni |
|- ( ( 1 ^ N ) e. { 1 } -> ( 1 ^ N ) = 1 ) |
| 26 |
24 25
|
syl |
|- ( N e. ZZ -> ( 1 ^ N ) = 1 ) |