Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
2 |
|
cndrng |
|- CCfld e. DivRing |
3 |
2
|
a1i |
|- ( T. -> CCfld e. DivRing ) |
4 |
|
qsscn |
|- QQ C_ CC |
5 |
4
|
a1i |
|- ( T. -> QQ C_ CC ) |
6 |
|
1z |
|- 1 e. ZZ |
7 |
|
snssi |
|- ( 1 e. ZZ -> { 1 } C_ ZZ ) |
8 |
6 7
|
ax-mp |
|- { 1 } C_ ZZ |
9 |
|
zssq |
|- ZZ C_ QQ |
10 |
8 9
|
sstri |
|- { 1 } C_ QQ |
11 |
10
|
a1i |
|- ( T. -> { 1 } C_ QQ ) |
12 |
1 3 5 11
|
fldgenss |
|- ( T. -> ( CCfld fldGen { 1 } ) C_ ( CCfld fldGen QQ ) ) |
13 |
|
qsubdrg |
|- ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) |
14 |
13
|
simpli |
|- QQ e. ( SubRing ` CCfld ) |
15 |
13
|
simpri |
|- ( CCfld |`s QQ ) e. DivRing |
16 |
|
issdrg |
|- ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) ) |
17 |
2 14 15 16
|
mpbir3an |
|- QQ e. ( SubDRing ` CCfld ) |
18 |
17
|
a1i |
|- ( T. -> QQ e. ( SubDRing ` CCfld ) ) |
19 |
1 3 18
|
fldgenidfld |
|- ( T. -> ( CCfld fldGen QQ ) = QQ ) |
20 |
12 19
|
sseqtrd |
|- ( T. -> ( CCfld fldGen { 1 } ) C_ QQ ) |
21 |
|
elq |
|- ( z e. QQ <-> E. p e. ZZ E. q e. NN z = ( p / q ) ) |
22 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
23 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
24 |
11 4
|
sstrdi |
|- ( T. -> { 1 } C_ CC ) |
25 |
1 3 24
|
fldgensdrg |
|- ( T. -> ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) ) |
26 |
25
|
mptru |
|- ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) |
27 |
26
|
a1i |
|- ( ( p e. ZZ /\ q e. NN ) -> ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) ) |
28 |
|
ax-1cn |
|- 1 e. CC |
29 |
|
cnfldmulg |
|- ( ( p e. ZZ /\ 1 e. CC ) -> ( p ( .g ` CCfld ) 1 ) = ( p x. 1 ) ) |
30 |
28 29
|
mpan2 |
|- ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) = ( p x. 1 ) ) |
31 |
|
zre |
|- ( p e. ZZ -> p e. RR ) |
32 |
|
ax-1rid |
|- ( p e. RR -> ( p x. 1 ) = p ) |
33 |
31 32
|
syl |
|- ( p e. ZZ -> ( p x. 1 ) = p ) |
34 |
30 33
|
eqtrd |
|- ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) = p ) |
35 |
|
issdrg |
|- ( ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) /\ ( CCfld |`s ( CCfld fldGen { 1 } ) ) e. DivRing ) ) |
36 |
26 35
|
mpbi |
|- ( CCfld e. DivRing /\ ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) /\ ( CCfld |`s ( CCfld fldGen { 1 } ) ) e. DivRing ) |
37 |
36
|
simp2i |
|- ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) |
38 |
|
subrgsubg |
|- ( ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) -> ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) ) |
39 |
37 38
|
ax-mp |
|- ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) |
40 |
1 3 24
|
fldgenssid |
|- ( T. -> { 1 } C_ ( CCfld fldGen { 1 } ) ) |
41 |
|
1ex |
|- 1 e. _V |
42 |
41
|
snss |
|- ( 1 e. ( CCfld fldGen { 1 } ) <-> { 1 } C_ ( CCfld fldGen { 1 } ) ) |
43 |
40 42
|
sylibr |
|- ( T. -> 1 e. ( CCfld fldGen { 1 } ) ) |
44 |
43
|
mptru |
|- 1 e. ( CCfld fldGen { 1 } ) |
45 |
|
eqid |
|- ( .g ` CCfld ) = ( .g ` CCfld ) |
46 |
45
|
subgmulgcl |
|- ( ( ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) /\ p e. ZZ /\ 1 e. ( CCfld fldGen { 1 } ) ) -> ( p ( .g ` CCfld ) 1 ) e. ( CCfld fldGen { 1 } ) ) |
47 |
39 44 46
|
mp3an13 |
|- ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) e. ( CCfld fldGen { 1 } ) ) |
48 |
34 47
|
eqeltrrd |
|- ( p e. ZZ -> p e. ( CCfld fldGen { 1 } ) ) |
49 |
48
|
adantr |
|- ( ( p e. ZZ /\ q e. NN ) -> p e. ( CCfld fldGen { 1 } ) ) |
50 |
48
|
ssriv |
|- ZZ C_ ( CCfld fldGen { 1 } ) |
51 |
|
nnz |
|- ( q e. NN -> q e. ZZ ) |
52 |
51
|
adantl |
|- ( ( p e. ZZ /\ q e. NN ) -> q e. ZZ ) |
53 |
50 52
|
sselid |
|- ( ( p e. ZZ /\ q e. NN ) -> q e. ( CCfld fldGen { 1 } ) ) |
54 |
|
nnne0 |
|- ( q e. NN -> q =/= 0 ) |
55 |
54
|
adantl |
|- ( ( p e. ZZ /\ q e. NN ) -> q =/= 0 ) |
56 |
22 23 27 49 53 55
|
sdrgdvcl |
|- ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. ( CCfld fldGen { 1 } ) ) |
57 |
|
eleq1 |
|- ( z = ( p / q ) -> ( z e. ( CCfld fldGen { 1 } ) <-> ( p / q ) e. ( CCfld fldGen { 1 } ) ) ) |
58 |
56 57
|
syl5ibrcom |
|- ( ( p e. ZZ /\ q e. NN ) -> ( z = ( p / q ) -> z e. ( CCfld fldGen { 1 } ) ) ) |
59 |
58
|
rexlimivv |
|- ( E. p e. ZZ E. q e. NN z = ( p / q ) -> z e. ( CCfld fldGen { 1 } ) ) |
60 |
21 59
|
sylbi |
|- ( z e. QQ -> z e. ( CCfld fldGen { 1 } ) ) |
61 |
60
|
ssriv |
|- QQ C_ ( CCfld fldGen { 1 } ) |
62 |
61
|
a1i |
|- ( T. -> QQ C_ ( CCfld fldGen { 1 } ) ) |
63 |
20 62
|
eqssd |
|- ( T. -> ( CCfld fldGen { 1 } ) = QQ ) |
64 |
63
|
mptru |
|- ( CCfld fldGen { 1 } ) = QQ |