Metamath Proof Explorer


Theorem 1fldgenq

Description: The field of rational numbers QQ is generated by 1 in CCfld , that is, QQ is the prime field of CCfld . (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Assertion 1fldgenq
|- ( CCfld fldGen { 1 } ) = QQ

Proof

Step Hyp Ref Expression
1 cnfldbas
 |-  CC = ( Base ` CCfld )
2 cndrng
 |-  CCfld e. DivRing
3 2 a1i
 |-  ( T. -> CCfld e. DivRing )
4 qsscn
 |-  QQ C_ CC
5 4 a1i
 |-  ( T. -> QQ C_ CC )
6 1z
 |-  1 e. ZZ
7 snssi
 |-  ( 1 e. ZZ -> { 1 } C_ ZZ )
8 6 7 ax-mp
 |-  { 1 } C_ ZZ
9 zssq
 |-  ZZ C_ QQ
10 8 9 sstri
 |-  { 1 } C_ QQ
11 10 a1i
 |-  ( T. -> { 1 } C_ QQ )
12 1 3 5 11 fldgenss
 |-  ( T. -> ( CCfld fldGen { 1 } ) C_ ( CCfld fldGen QQ ) )
13 qsubdrg
 |-  ( QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing )
14 13 simpli
 |-  QQ e. ( SubRing ` CCfld )
15 13 simpri
 |-  ( CCfld |`s QQ ) e. DivRing
16 issdrg
 |-  ( QQ e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ QQ e. ( SubRing ` CCfld ) /\ ( CCfld |`s QQ ) e. DivRing ) )
17 2 14 15 16 mpbir3an
 |-  QQ e. ( SubDRing ` CCfld )
18 17 a1i
 |-  ( T. -> QQ e. ( SubDRing ` CCfld ) )
19 1 3 18 fldgenidfld
 |-  ( T. -> ( CCfld fldGen QQ ) = QQ )
20 12 19 sseqtrd
 |-  ( T. -> ( CCfld fldGen { 1 } ) C_ QQ )
21 elq
 |-  ( z e. QQ <-> E. p e. ZZ E. q e. NN z = ( p / q ) )
22 cnflddiv
 |-  / = ( /r ` CCfld )
23 cnfld0
 |-  0 = ( 0g ` CCfld )
24 11 4 sstrdi
 |-  ( T. -> { 1 } C_ CC )
25 1 3 24 fldgensdrg
 |-  ( T. -> ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) )
26 25 mptru
 |-  ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld )
27 26 a1i
 |-  ( ( p e. ZZ /\ q e. NN ) -> ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) )
28 ax-1cn
 |-  1 e. CC
29 cnfldmulg
 |-  ( ( p e. ZZ /\ 1 e. CC ) -> ( p ( .g ` CCfld ) 1 ) = ( p x. 1 ) )
30 28 29 mpan2
 |-  ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) = ( p x. 1 ) )
31 zre
 |-  ( p e. ZZ -> p e. RR )
32 ax-1rid
 |-  ( p e. RR -> ( p x. 1 ) = p )
33 31 32 syl
 |-  ( p e. ZZ -> ( p x. 1 ) = p )
34 30 33 eqtrd
 |-  ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) = p )
35 issdrg
 |-  ( ( CCfld fldGen { 1 } ) e. ( SubDRing ` CCfld ) <-> ( CCfld e. DivRing /\ ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) /\ ( CCfld |`s ( CCfld fldGen { 1 } ) ) e. DivRing ) )
36 26 35 mpbi
 |-  ( CCfld e. DivRing /\ ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) /\ ( CCfld |`s ( CCfld fldGen { 1 } ) ) e. DivRing )
37 36 simp2i
 |-  ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld )
38 subrgsubg
 |-  ( ( CCfld fldGen { 1 } ) e. ( SubRing ` CCfld ) -> ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) )
39 37 38 ax-mp
 |-  ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld )
40 1 3 24 fldgenssid
 |-  ( T. -> { 1 } C_ ( CCfld fldGen { 1 } ) )
41 1ex
 |-  1 e. _V
42 41 snss
 |-  ( 1 e. ( CCfld fldGen { 1 } ) <-> { 1 } C_ ( CCfld fldGen { 1 } ) )
43 40 42 sylibr
 |-  ( T. -> 1 e. ( CCfld fldGen { 1 } ) )
44 43 mptru
 |-  1 e. ( CCfld fldGen { 1 } )
45 eqid
 |-  ( .g ` CCfld ) = ( .g ` CCfld )
46 45 subgmulgcl
 |-  ( ( ( CCfld fldGen { 1 } ) e. ( SubGrp ` CCfld ) /\ p e. ZZ /\ 1 e. ( CCfld fldGen { 1 } ) ) -> ( p ( .g ` CCfld ) 1 ) e. ( CCfld fldGen { 1 } ) )
47 39 44 46 mp3an13
 |-  ( p e. ZZ -> ( p ( .g ` CCfld ) 1 ) e. ( CCfld fldGen { 1 } ) )
48 34 47 eqeltrrd
 |-  ( p e. ZZ -> p e. ( CCfld fldGen { 1 } ) )
49 48 adantr
 |-  ( ( p e. ZZ /\ q e. NN ) -> p e. ( CCfld fldGen { 1 } ) )
50 48 ssriv
 |-  ZZ C_ ( CCfld fldGen { 1 } )
51 nnz
 |-  ( q e. NN -> q e. ZZ )
52 51 adantl
 |-  ( ( p e. ZZ /\ q e. NN ) -> q e. ZZ )
53 50 52 sselid
 |-  ( ( p e. ZZ /\ q e. NN ) -> q e. ( CCfld fldGen { 1 } ) )
54 nnne0
 |-  ( q e. NN -> q =/= 0 )
55 54 adantl
 |-  ( ( p e. ZZ /\ q e. NN ) -> q =/= 0 )
56 22 23 27 49 53 55 sdrgdvcl
 |-  ( ( p e. ZZ /\ q e. NN ) -> ( p / q ) e. ( CCfld fldGen { 1 } ) )
57 eleq1
 |-  ( z = ( p / q ) -> ( z e. ( CCfld fldGen { 1 } ) <-> ( p / q ) e. ( CCfld fldGen { 1 } ) ) )
58 56 57 syl5ibrcom
 |-  ( ( p e. ZZ /\ q e. NN ) -> ( z = ( p / q ) -> z e. ( CCfld fldGen { 1 } ) ) )
59 58 rexlimivv
 |-  ( E. p e. ZZ E. q e. NN z = ( p / q ) -> z e. ( CCfld fldGen { 1 } ) )
60 21 59 sylbi
 |-  ( z e. QQ -> z e. ( CCfld fldGen { 1 } ) )
61 60 ssriv
 |-  QQ C_ ( CCfld fldGen { 1 } )
62 61 a1i
 |-  ( T. -> QQ C_ ( CCfld fldGen { 1 } ) )
63 20 62 eqssd
 |-  ( T. -> ( CCfld fldGen { 1 } ) = QQ )
64 63 mptru
 |-  ( CCfld fldGen { 1 } ) = QQ