Metamath Proof Explorer


Theorem 1fpid3

Description: The value of the conditional operator for propositions is its third argument if the first and second argument imply the third argument. (Contributed by AV, 4-Apr-2021)

Ref Expression
Hypothesis 1fpid3.1
|- ( ( ph /\ ps ) -> ch )
Assertion 1fpid3
|- ( if- ( ph , ps , ch ) -> ch )

Proof

Step Hyp Ref Expression
1 1fpid3.1
 |-  ( ( ph /\ ps ) -> ch )
2 df-ifp
 |-  ( if- ( ph , ps , ch ) <-> ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) )
3 simpr
 |-  ( ( -. ph /\ ch ) -> ch )
4 1 3 jaoi
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ ch ) ) -> ch )
5 2 4 sylbi
 |-  ( if- ( ph , ps , ch ) -> ch )