| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z |  |-  0 e. ZZ | 
						
							| 2 | 1 | a1i |  |-  ( N e. V -> 0 e. ZZ ) | 
						
							| 3 |  | id |  |-  ( N e. V -> N e. V ) | 
						
							| 4 | 2 3 | fsnd |  |-  ( N e. V -> { <. 0 , N >. } : { 0 } --> V ) | 
						
							| 5 |  | fvsng |  |-  ( ( 0 e. ZZ /\ N e. V ) -> ( { <. 0 , N >. } ` 0 ) = N ) | 
						
							| 6 | 1 5 | mpan |  |-  ( N e. V -> ( { <. 0 , N >. } ` 0 ) = N ) | 
						
							| 7 | 4 6 | jca |  |-  ( N e. V -> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) | 
						
							| 9 |  | id |  |-  ( P = { <. 0 , N >. } -> P = { <. 0 , N >. } ) | 
						
							| 10 |  | fz0sn |  |-  ( 0 ... 0 ) = { 0 } | 
						
							| 11 | 10 | a1i |  |-  ( P = { <. 0 , N >. } -> ( 0 ... 0 ) = { 0 } ) | 
						
							| 12 | 9 11 | feq12d |  |-  ( P = { <. 0 , N >. } -> ( P : ( 0 ... 0 ) --> V <-> { <. 0 , N >. } : { 0 } --> V ) ) | 
						
							| 13 |  | fveq1 |  |-  ( P = { <. 0 , N >. } -> ( P ` 0 ) = ( { <. 0 , N >. } ` 0 ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( P = { <. 0 , N >. } -> ( ( P ` 0 ) = N <-> ( { <. 0 , N >. } ` 0 ) = N ) ) | 
						
							| 15 | 12 14 | anbi12d |  |-  ( P = { <. 0 , N >. } -> ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) <-> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) <-> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) ) | 
						
							| 17 | 8 16 | mpbird |  |-  ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) |