Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1hegrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 1hegrvtxdg1.b | |- ( ph -> B e. V ) |
||
| 1hegrvtxdg1.c | |- ( ph -> C e. V ) |
||
| 1hegrvtxdg1.n | |- ( ph -> B =/= C ) |
||
| 1hegrvtxdg1.x | |- ( ph -> E e. ~P V ) |
||
| 1hegrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
||
| 1hegrvtxdg1.e | |- ( ph -> { B , C } C_ E ) |
||
| 1hegrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
||
| Assertion | 1hegrvtxdg1 | |- ( ph -> ( ( VtxDeg ` G ) ` B ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hegrvtxdg1.a | |- ( ph -> A e. X ) |
|
| 2 | 1hegrvtxdg1.b | |- ( ph -> B e. V ) |
|
| 3 | 1hegrvtxdg1.c | |- ( ph -> C e. V ) |
|
| 4 | 1hegrvtxdg1.n | |- ( ph -> B =/= C ) |
|
| 5 | 1hegrvtxdg1.x | |- ( ph -> E e. ~P V ) |
|
| 6 | 1hegrvtxdg1.i | |- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
|
| 7 | 1hegrvtxdg1.e | |- ( ph -> { B , C } C_ E ) |
|
| 8 | 1hegrvtxdg1.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
| 9 | prid1g | |- ( B e. V -> B e. { B , C } ) |
|
| 10 | 2 9 | syl | |- ( ph -> B e. { B , C } ) |
| 11 | 7 10 | sseldd | |- ( ph -> B e. E ) |
| 12 | prid2g | |- ( C e. V -> C e. { B , C } ) |
|
| 13 | 3 12 | syl | |- ( ph -> C e. { B , C } ) |
| 14 | 7 13 | sseldd | |- ( ph -> C e. E ) |
| 15 | 5 11 14 4 | nehash2 | |- ( ph -> 2 <_ ( # ` E ) ) |
| 16 | 6 8 1 2 5 11 15 | 1hevtxdg1 | |- ( ph -> ( ( VtxDeg ` G ) ` B ) = 1 ) |