Database
GRAPH THEORY
Undirected graphs
Vertex degree
1hegrvtxdg1r
Metamath Proof Explorer
Description: The vertex degree of a graph with one hyperedge, case 3: an edge from
some other vertex to the given vertex contributes one to the vertex's
degree. (Contributed by Mario Carneiro , 12-Mar-2015) (Revised by Alexander van der Vekens , 22-Dec-2017) (Revised by AV , 23-Feb-2021)
Ref
Expression
Hypotheses
1hegrvtxdg1.a
|- ( ph -> A e. X )
1hegrvtxdg1.b
|- ( ph -> B e. V )
1hegrvtxdg1.c
|- ( ph -> C e. V )
1hegrvtxdg1.n
|- ( ph -> B =/= C )
1hegrvtxdg1.x
|- ( ph -> E e. ~P V )
1hegrvtxdg1.i
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } )
1hegrvtxdg1.e
|- ( ph -> { B , C } C_ E )
1hegrvtxdg1.v
|- ( ph -> ( Vtx ` G ) = V )
Assertion
1hegrvtxdg1r
|- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 )
Proof
Step
Hyp
Ref
Expression
1
1hegrvtxdg1.a
|- ( ph -> A e. X )
2
1hegrvtxdg1.b
|- ( ph -> B e. V )
3
1hegrvtxdg1.c
|- ( ph -> C e. V )
4
1hegrvtxdg1.n
|- ( ph -> B =/= C )
5
1hegrvtxdg1.x
|- ( ph -> E e. ~P V )
6
1hegrvtxdg1.i
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } )
7
1hegrvtxdg1.e
|- ( ph -> { B , C } C_ E )
8
1hegrvtxdg1.v
|- ( ph -> ( Vtx ` G ) = V )
9
4
necomd
|- ( ph -> C =/= B )
10
prcom
|- { C , B } = { B , C }
11
10 7
eqsstrid
|- ( ph -> { C , B } C_ E )
12
1 3 2 9 5 6 11 8
1hegrvtxdg1
|- ( ph -> ( ( VtxDeg ` G ) ` C ) = 1 )