| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1hevtxdg0.i |
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
| 2 |
|
1hevtxdg0.v |
|- ( ph -> ( Vtx ` G ) = V ) |
| 3 |
|
1hevtxdg0.a |
|- ( ph -> A e. X ) |
| 4 |
|
1hevtxdg0.d |
|- ( ph -> D e. V ) |
| 5 |
|
1hevtxdg0.e |
|- ( ph -> E e. Y ) |
| 6 |
|
1hevtxdg0.n |
|- ( ph -> D e/ E ) |
| 7 |
|
df-nel |
|- ( D e/ E <-> -. D e. E ) |
| 8 |
6 7
|
sylib |
|- ( ph -> -. D e. E ) |
| 9 |
1
|
fveq1d |
|- ( ph -> ( ( iEdg ` G ) ` A ) = ( { <. A , E >. } ` A ) ) |
| 10 |
|
fvsng |
|- ( ( A e. X /\ E e. Y ) -> ( { <. A , E >. } ` A ) = E ) |
| 11 |
3 5 10
|
syl2anc |
|- ( ph -> ( { <. A , E >. } ` A ) = E ) |
| 12 |
9 11
|
eqtrd |
|- ( ph -> ( ( iEdg ` G ) ` A ) = E ) |
| 13 |
8 12
|
neleqtrrd |
|- ( ph -> -. D e. ( ( iEdg ` G ) ` A ) ) |
| 14 |
|
fveq2 |
|- ( x = A -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` A ) ) |
| 15 |
14
|
eleq2d |
|- ( x = A -> ( D e. ( ( iEdg ` G ) ` x ) <-> D e. ( ( iEdg ` G ) ` A ) ) ) |
| 16 |
15
|
notbid |
|- ( x = A -> ( -. D e. ( ( iEdg ` G ) ` x ) <-> -. D e. ( ( iEdg ` G ) ` A ) ) ) |
| 17 |
16
|
ralsng |
|- ( A e. X -> ( A. x e. { A } -. D e. ( ( iEdg ` G ) ` x ) <-> -. D e. ( ( iEdg ` G ) ` A ) ) ) |
| 18 |
3 17
|
syl |
|- ( ph -> ( A. x e. { A } -. D e. ( ( iEdg ` G ) ` x ) <-> -. D e. ( ( iEdg ` G ) ` A ) ) ) |
| 19 |
13 18
|
mpbird |
|- ( ph -> A. x e. { A } -. D e. ( ( iEdg ` G ) ` x ) ) |
| 20 |
1
|
dmeqd |
|- ( ph -> dom ( iEdg ` G ) = dom { <. A , E >. } ) |
| 21 |
|
dmsnopg |
|- ( E e. Y -> dom { <. A , E >. } = { A } ) |
| 22 |
5 21
|
syl |
|- ( ph -> dom { <. A , E >. } = { A } ) |
| 23 |
20 22
|
eqtrd |
|- ( ph -> dom ( iEdg ` G ) = { A } ) |
| 24 |
19 23
|
raleqtrrdv |
|- ( ph -> A. x e. dom ( iEdg ` G ) -. D e. ( ( iEdg ` G ) ` x ) ) |
| 25 |
|
ralnex |
|- ( A. x e. dom ( iEdg ` G ) -. D e. ( ( iEdg ` G ) ` x ) <-> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) |
| 26 |
24 25
|
sylib |
|- ( ph -> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) |
| 27 |
2
|
eleq2d |
|- ( ph -> ( D e. ( Vtx ` G ) <-> D e. V ) ) |
| 28 |
4 27
|
mpbird |
|- ( ph -> D e. ( Vtx ` G ) ) |
| 29 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 30 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 31 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
| 32 |
29 30 31
|
vtxd0nedgb |
|- ( D e. ( Vtx ` G ) -> ( ( ( VtxDeg ` G ) ` D ) = 0 <-> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) ) |
| 33 |
28 32
|
syl |
|- ( ph -> ( ( ( VtxDeg ` G ) ` D ) = 0 <-> -. E. x e. dom ( iEdg ` G ) D e. ( ( iEdg ` G ) ` x ) ) ) |
| 34 |
26 33
|
mpbird |
|- ( ph -> ( ( VtxDeg ` G ) ` D ) = 0 ) |