| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1hevtxdg0.i |
|- ( ph -> ( iEdg ` G ) = { <. A , E >. } ) |
| 2 |
|
1hevtxdg0.v |
|- ( ph -> ( Vtx ` G ) = V ) |
| 3 |
|
1hevtxdg0.a |
|- ( ph -> A e. X ) |
| 4 |
|
1hevtxdg0.d |
|- ( ph -> D e. V ) |
| 5 |
|
1hevtxdg1.e |
|- ( ph -> E e. ~P V ) |
| 6 |
|
1hevtxdg1.n |
|- ( ph -> D e. E ) |
| 7 |
|
1hevtxdg1.l |
|- ( ph -> 2 <_ ( # ` E ) ) |
| 8 |
1
|
dmeqd |
|- ( ph -> dom ( iEdg ` G ) = dom { <. A , E >. } ) |
| 9 |
|
dmsnopg |
|- ( E e. ~P V -> dom { <. A , E >. } = { A } ) |
| 10 |
5 9
|
syl |
|- ( ph -> dom { <. A , E >. } = { A } ) |
| 11 |
8 10
|
eqtrd |
|- ( ph -> dom ( iEdg ` G ) = { A } ) |
| 12 |
|
fveq2 |
|- ( x = E -> ( # ` x ) = ( # ` E ) ) |
| 13 |
12
|
breq2d |
|- ( x = E -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` E ) ) ) |
| 14 |
2
|
pweqd |
|- ( ph -> ~P ( Vtx ` G ) = ~P V ) |
| 15 |
5 14
|
eleqtrrd |
|- ( ph -> E e. ~P ( Vtx ` G ) ) |
| 16 |
13 15 7
|
elrabd |
|- ( ph -> E e. { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 17 |
3 16
|
fsnd |
|- ( ph -> { <. A , E >. } : { A } --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> { <. A , E >. } : { A } --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 19 |
1
|
adantr |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( iEdg ` G ) = { <. A , E >. } ) |
| 20 |
|
simpr |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> dom ( iEdg ` G ) = { A } ) |
| 21 |
19 20
|
feq12d |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } <-> { <. A , E >. } : { A } --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
| 22 |
18 21
|
mpbird |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) |
| 23 |
4 2
|
eleqtrrd |
|- ( ph -> D e. ( Vtx ` G ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> D e. ( Vtx ` G ) ) |
| 25 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 26 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 27 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
| 28 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
| 29 |
25 26 27 28
|
vtxdlfgrval |
|- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } /\ D e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` D ) = ( # ` { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } ) ) |
| 30 |
22 24 29
|
syl2anc |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( ( VtxDeg ` G ) ` D ) = ( # ` { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } ) ) |
| 31 |
|
rabeq |
|- ( dom ( iEdg ` G ) = { A } -> { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } = { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) |
| 32 |
31
|
adantl |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } = { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( # ` { x e. dom ( iEdg ` G ) | D e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) ) |
| 34 |
|
fveq2 |
|- ( x = A -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` A ) ) |
| 35 |
34
|
eleq2d |
|- ( x = A -> ( D e. ( ( iEdg ` G ) ` x ) <-> D e. ( ( iEdg ` G ) ` A ) ) ) |
| 36 |
35
|
rabsnif |
|- { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } = if ( D e. ( ( iEdg ` G ) ` A ) , { A } , (/) ) |
| 37 |
1
|
fveq1d |
|- ( ph -> ( ( iEdg ` G ) ` A ) = ( { <. A , E >. } ` A ) ) |
| 38 |
|
fvsng |
|- ( ( A e. X /\ E e. ~P V ) -> ( { <. A , E >. } ` A ) = E ) |
| 39 |
3 5 38
|
syl2anc |
|- ( ph -> ( { <. A , E >. } ` A ) = E ) |
| 40 |
37 39
|
eqtrd |
|- ( ph -> ( ( iEdg ` G ) ` A ) = E ) |
| 41 |
6 40
|
eleqtrrd |
|- ( ph -> D e. ( ( iEdg ` G ) ` A ) ) |
| 42 |
41
|
iftrued |
|- ( ph -> if ( D e. ( ( iEdg ` G ) ` A ) , { A } , (/) ) = { A } ) |
| 43 |
36 42
|
eqtrid |
|- ( ph -> { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } = { A } ) |
| 44 |
43
|
fveq2d |
|- ( ph -> ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { A } ) ) |
| 45 |
|
hashsng |
|- ( A e. X -> ( # ` { A } ) = 1 ) |
| 46 |
3 45
|
syl |
|- ( ph -> ( # ` { A } ) = 1 ) |
| 47 |
44 46
|
eqtrd |
|- ( ph -> ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) = 1 ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( # ` { x e. { A } | D e. ( ( iEdg ` G ) ` x ) } ) = 1 ) |
| 49 |
30 33 48
|
3eqtrd |
|- ( ( ph /\ dom ( iEdg ` G ) = { A } ) -> ( ( VtxDeg ` G ) ` D ) = 1 ) |
| 50 |
11 49
|
mpdan |
|- ( ph -> ( ( VtxDeg ` G ) ` D ) = 1 ) |