Metamath Proof Explorer


Theorem 1le2

Description: 1 is less than or equal to 2. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 1le2
|- 1 <_ 2

Proof

Step Hyp Ref Expression
1 1re
 |-  1 e. RR
2 2re
 |-  2 e. RR
3 1lt2
 |-  1 < 2
4 1 2 3 ltleii
 |-  1 <_ 2