Metamath Proof Explorer


Theorem 1loopgredg

Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v
|- ( ph -> ( Vtx ` G ) = V )
1loopgruspgr.a
|- ( ph -> A e. X )
1loopgruspgr.n
|- ( ph -> N e. V )
1loopgruspgr.i
|- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } )
Assertion 1loopgredg
|- ( ph -> ( Edg ` G ) = { { N } } )

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v
 |-  ( ph -> ( Vtx ` G ) = V )
2 1loopgruspgr.a
 |-  ( ph -> A e. X )
3 1loopgruspgr.n
 |-  ( ph -> N e. V )
4 1loopgruspgr.i
 |-  ( ph -> ( iEdg ` G ) = { <. A , { N } >. } )
5 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
6 5 a1i
 |-  ( ph -> ( Edg ` G ) = ran ( iEdg ` G ) )
7 4 rneqd
 |-  ( ph -> ran ( iEdg ` G ) = ran { <. A , { N } >. } )
8 rnsnopg
 |-  ( A e. X -> ran { <. A , { N } >. } = { { N } } )
9 2 8 syl
 |-  ( ph -> ran { <. A , { N } >. } = { { N } } )
10 6 7 9 3eqtrd
 |-  ( ph -> ( Edg ` G ) = { { N } } )