Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
1loopgruspgr.a | |- ( ph -> A e. X ) |
||
1loopgruspgr.n | |- ( ph -> N e. V ) |
||
1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
||
Assertion | 1loopgredg | |- ( ph -> ( Edg ` G ) = { { N } } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1loopgruspgr.v | |- ( ph -> ( Vtx ` G ) = V ) |
|
2 | 1loopgruspgr.a | |- ( ph -> A e. X ) |
|
3 | 1loopgruspgr.n | |- ( ph -> N e. V ) |
|
4 | 1loopgruspgr.i | |- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
|
5 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
6 | 5 | a1i | |- ( ph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
7 | 4 | rneqd | |- ( ph -> ran ( iEdg ` G ) = ran { <. A , { N } >. } ) |
8 | rnsnopg | |- ( A e. X -> ran { <. A , { N } >. } = { { N } } ) |
|
9 | 2 8 | syl | |- ( ph -> ran { <. A , { N } >. } = { { N } } ) |
10 | 6 7 9 | 3eqtrd | |- ( ph -> ( Edg ` G ) = { { N } } ) |