Step |
Hyp |
Ref |
Expression |
1 |
|
1loopgruspgr.v |
|- ( ph -> ( Vtx ` G ) = V ) |
2 |
|
1loopgruspgr.a |
|- ( ph -> A e. X ) |
3 |
|
1loopgruspgr.n |
|- ( ph -> N e. V ) |
4 |
|
1loopgruspgr.i |
|- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
5 |
1 2 3 4
|
1loopgruspgr |
|- ( ph -> G e. USPGraph ) |
6 |
|
uspgrupgr |
|- ( G e. USPGraph -> G e. UPGraph ) |
7 |
5 6
|
syl |
|- ( ph -> G e. UPGraph ) |
8 |
1
|
eleq2d |
|- ( ph -> ( N e. ( Vtx ` G ) <-> N e. V ) ) |
9 |
3 8
|
mpbird |
|- ( ph -> N e. ( Vtx ` G ) ) |
10 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
11 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
12 |
10 11
|
nbupgr |
|- ( ( G e. UPGraph /\ N e. ( Vtx ` G ) ) -> ( G NeighbVtx N ) = { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } ) |
13 |
7 9 12
|
syl2anc |
|- ( ph -> ( G NeighbVtx N ) = { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } ) |
14 |
1
|
difeq1d |
|- ( ph -> ( ( Vtx ` G ) \ { N } ) = ( V \ { N } ) ) |
15 |
14
|
eleq2d |
|- ( ph -> ( v e. ( ( Vtx ` G ) \ { N } ) <-> v e. ( V \ { N } ) ) ) |
16 |
|
eldifsn |
|- ( v e. ( V \ { N } ) <-> ( v e. V /\ v =/= N ) ) |
17 |
3
|
adantr |
|- ( ( ph /\ v e. V ) -> N e. V ) |
18 |
|
simpr |
|- ( ( ph /\ v e. V ) -> v e. V ) |
19 |
17 18
|
preqsnd |
|- ( ( ph /\ v e. V ) -> ( { N , v } = { N } <-> ( N = N /\ v = N ) ) ) |
20 |
|
simpr |
|- ( ( N = N /\ v = N ) -> v = N ) |
21 |
19 20
|
syl6bi |
|- ( ( ph /\ v e. V ) -> ( { N , v } = { N } -> v = N ) ) |
22 |
21
|
necon3ad |
|- ( ( ph /\ v e. V ) -> ( v =/= N -> -. { N , v } = { N } ) ) |
23 |
22
|
expimpd |
|- ( ph -> ( ( v e. V /\ v =/= N ) -> -. { N , v } = { N } ) ) |
24 |
16 23
|
syl5bi |
|- ( ph -> ( v e. ( V \ { N } ) -> -. { N , v } = { N } ) ) |
25 |
15 24
|
sylbid |
|- ( ph -> ( v e. ( ( Vtx ` G ) \ { N } ) -> -. { N , v } = { N } ) ) |
26 |
25
|
imp |
|- ( ( ph /\ v e. ( ( Vtx ` G ) \ { N } ) ) -> -. { N , v } = { N } ) |
27 |
1 2 3 4
|
1loopgredg |
|- ( ph -> ( Edg ` G ) = { { N } } ) |
28 |
27
|
eleq2d |
|- ( ph -> ( { N , v } e. ( Edg ` G ) <-> { N , v } e. { { N } } ) ) |
29 |
|
prex |
|- { N , v } e. _V |
30 |
29
|
elsn |
|- ( { N , v } e. { { N } } <-> { N , v } = { N } ) |
31 |
28 30
|
bitrdi |
|- ( ph -> ( { N , v } e. ( Edg ` G ) <-> { N , v } = { N } ) ) |
32 |
31
|
notbid |
|- ( ph -> ( -. { N , v } e. ( Edg ` G ) <-> -. { N , v } = { N } ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ v e. ( ( Vtx ` G ) \ { N } ) ) -> ( -. { N , v } e. ( Edg ` G ) <-> -. { N , v } = { N } ) ) |
34 |
26 33
|
mpbird |
|- ( ( ph /\ v e. ( ( Vtx ` G ) \ { N } ) ) -> -. { N , v } e. ( Edg ` G ) ) |
35 |
34
|
ralrimiva |
|- ( ph -> A. v e. ( ( Vtx ` G ) \ { N } ) -. { N , v } e. ( Edg ` G ) ) |
36 |
|
rabeq0 |
|- ( { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } = (/) <-> A. v e. ( ( Vtx ` G ) \ { N } ) -. { N , v } e. ( Edg ` G ) ) |
37 |
35 36
|
sylibr |
|- ( ph -> { v e. ( ( Vtx ` G ) \ { N } ) | { N , v } e. ( Edg ` G ) } = (/) ) |
38 |
13 37
|
eqtrd |
|- ( ph -> ( G NeighbVtx N ) = (/) ) |