Step |
Hyp |
Ref |
Expression |
1 |
|
1loopgruspgr.v |
|- ( ph -> ( Vtx ` G ) = V ) |
2 |
|
1loopgruspgr.a |
|- ( ph -> A e. X ) |
3 |
|
1loopgruspgr.n |
|- ( ph -> N e. V ) |
4 |
|
1loopgruspgr.i |
|- ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) |
5 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
6 |
3 1
|
eleqtrrd |
|- ( ph -> N e. ( Vtx ` G ) ) |
7 |
|
dfsn2 |
|- { N } = { N , N } |
8 |
7
|
a1i |
|- ( ph -> { N } = { N , N } ) |
9 |
8
|
opeq2d |
|- ( ph -> <. A , { N } >. = <. A , { N , N } >. ) |
10 |
9
|
sneqd |
|- ( ph -> { <. A , { N } >. } = { <. A , { N , N } >. } ) |
11 |
4 10
|
eqtrd |
|- ( ph -> ( iEdg ` G ) = { <. A , { N , N } >. } ) |
12 |
5 2 6 6 11
|
uspgr1e |
|- ( ph -> G e. USPGraph ) |