| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1loopgruspgr.v |  |-  ( ph -> ( Vtx ` G ) = V ) | 
						
							| 2 |  | 1loopgruspgr.a |  |-  ( ph -> A e. X ) | 
						
							| 3 |  | 1loopgruspgr.n |  |-  ( ph -> N e. V ) | 
						
							| 4 |  | 1loopgruspgr.i |  |-  ( ph -> ( iEdg ` G ) = { <. A , { N } >. } ) | 
						
							| 5 |  | 1loopgrvd0.k |  |-  ( ph -> K e. ( V \ { N } ) ) | 
						
							| 6 | 5 | eldifbd |  |-  ( ph -> -. K e. { N } ) | 
						
							| 7 |  | snex |  |-  { N } e. _V | 
						
							| 8 |  | fvsng |  |-  ( ( A e. X /\ { N } e. _V ) -> ( { <. A , { N } >. } ` A ) = { N } ) | 
						
							| 9 | 2 7 8 | sylancl |  |-  ( ph -> ( { <. A , { N } >. } ` A ) = { N } ) | 
						
							| 10 | 9 | eleq2d |  |-  ( ph -> ( K e. ( { <. A , { N } >. } ` A ) <-> K e. { N } ) ) | 
						
							| 11 | 6 10 | mtbird |  |-  ( ph -> -. K e. ( { <. A , { N } >. } ` A ) ) | 
						
							| 12 | 4 | dmeqd |  |-  ( ph -> dom ( iEdg ` G ) = dom { <. A , { N } >. } ) | 
						
							| 13 |  | dmsnopg |  |-  ( { N } e. _V -> dom { <. A , { N } >. } = { A } ) | 
						
							| 14 | 7 13 | mp1i |  |-  ( ph -> dom { <. A , { N } >. } = { A } ) | 
						
							| 15 | 12 14 | eqtrd |  |-  ( ph -> dom ( iEdg ` G ) = { A } ) | 
						
							| 16 | 4 | fveq1d |  |-  ( ph -> ( ( iEdg ` G ) ` i ) = ( { <. A , { N } >. } ` i ) ) | 
						
							| 17 | 16 | eleq2d |  |-  ( ph -> ( K e. ( ( iEdg ` G ) ` i ) <-> K e. ( { <. A , { N } >. } ` i ) ) ) | 
						
							| 18 | 15 17 | rexeqbidv |  |-  ( ph -> ( E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) <-> E. i e. { A } K e. ( { <. A , { N } >. } ` i ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( i = A -> ( { <. A , { N } >. } ` i ) = ( { <. A , { N } >. } ` A ) ) | 
						
							| 20 | 19 | eleq2d |  |-  ( i = A -> ( K e. ( { <. A , { N } >. } ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) | 
						
							| 21 | 20 | rexsng |  |-  ( A e. X -> ( E. i e. { A } K e. ( { <. A , { N } >. } ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) | 
						
							| 22 | 2 21 | syl |  |-  ( ph -> ( E. i e. { A } K e. ( { <. A , { N } >. } ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) | 
						
							| 23 | 18 22 | bitrd |  |-  ( ph -> ( E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) <-> K e. ( { <. A , { N } >. } ` A ) ) ) | 
						
							| 24 | 11 23 | mtbird |  |-  ( ph -> -. E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) ) | 
						
							| 25 | 5 | eldifad |  |-  ( ph -> K e. V ) | 
						
							| 26 | 1 | eleq2d |  |-  ( ph -> ( K e. ( Vtx ` G ) <-> K e. V ) ) | 
						
							| 27 | 25 26 | mpbird |  |-  ( ph -> K e. ( Vtx ` G ) ) | 
						
							| 28 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 29 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 30 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 31 | 28 29 30 | vtxd0nedgb |  |-  ( K e. ( Vtx ` G ) -> ( ( ( VtxDeg ` G ) ` K ) = 0 <-> -. E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 32 | 27 31 | syl |  |-  ( ph -> ( ( ( VtxDeg ` G ) ` K ) = 0 <-> -. E. i e. dom ( iEdg ` G ) K e. ( ( iEdg ` G ) ` i ) ) ) | 
						
							| 33 | 24 32 | mpbird |  |-  ( ph -> ( ( VtxDeg ` G ) ` K ) = 0 ) |