Step |
Hyp |
Ref |
Expression |
1 |
|
1lt2pi |
|- 1o |
2 |
|
1pi |
|- 1o e. N. |
3 |
|
mulidpi |
|- ( 1o e. N. -> ( 1o .N 1o ) = 1o ) |
4 |
2 3
|
ax-mp |
|- ( 1o .N 1o ) = 1o |
5 |
|
addclpi |
|- ( ( 1o e. N. /\ 1o e. N. ) -> ( 1o +N 1o ) e. N. ) |
6 |
2 2 5
|
mp2an |
|- ( 1o +N 1o ) e. N. |
7 |
|
mulidpi |
|- ( ( 1o +N 1o ) e. N. -> ( ( 1o +N 1o ) .N 1o ) = ( 1o +N 1o ) ) |
8 |
6 7
|
ax-mp |
|- ( ( 1o +N 1o ) .N 1o ) = ( 1o +N 1o ) |
9 |
1 4 8
|
3brtr4i |
|- ( 1o .N 1o ) |
10 |
|
ordpipq |
|- ( <. 1o , 1o >. . <-> ( 1o .N 1o ) |
11 |
9 10
|
mpbir |
|- <. 1o , 1o >. . |
12 |
|
df-1nq |
|- 1Q = <. 1o , 1o >. |
13 |
12 12
|
oveq12i |
|- ( 1Q +pQ 1Q ) = ( <. 1o , 1o >. +pQ <. 1o , 1o >. ) |
14 |
|
addpipq |
|- ( ( ( 1o e. N. /\ 1o e. N. ) /\ ( 1o e. N. /\ 1o e. N. ) ) -> ( <. 1o , 1o >. +pQ <. 1o , 1o >. ) = <. ( ( 1o .N 1o ) +N ( 1o .N 1o ) ) , ( 1o .N 1o ) >. ) |
15 |
2 2 2 2 14
|
mp4an |
|- ( <. 1o , 1o >. +pQ <. 1o , 1o >. ) = <. ( ( 1o .N 1o ) +N ( 1o .N 1o ) ) , ( 1o .N 1o ) >. |
16 |
4 4
|
oveq12i |
|- ( ( 1o .N 1o ) +N ( 1o .N 1o ) ) = ( 1o +N 1o ) |
17 |
16 4
|
opeq12i |
|- <. ( ( 1o .N 1o ) +N ( 1o .N 1o ) ) , ( 1o .N 1o ) >. = <. ( 1o +N 1o ) , 1o >. |
18 |
13 15 17
|
3eqtri |
|- ( 1Q +pQ 1Q ) = <. ( 1o +N 1o ) , 1o >. |
19 |
11 12 18
|
3brtr4i |
|- 1Q |
20 |
|
lterpq |
|- ( 1Q ( /Q ` 1Q ) |
21 |
19 20
|
mpbi |
|- ( /Q ` 1Q ) |
22 |
|
1nq |
|- 1Q e. Q. |
23 |
|
nqerid |
|- ( 1Q e. Q. -> ( /Q ` 1Q ) = 1Q ) |
24 |
22 23
|
ax-mp |
|- ( /Q ` 1Q ) = 1Q |
25 |
24
|
eqcomi |
|- 1Q = ( /Q ` 1Q ) |
26 |
|
addpqnq |
|- ( ( 1Q e. Q. /\ 1Q e. Q. ) -> ( 1Q +Q 1Q ) = ( /Q ` ( 1Q +pQ 1Q ) ) ) |
27 |
22 22 26
|
mp2an |
|- ( 1Q +Q 1Q ) = ( /Q ` ( 1Q +pQ 1Q ) ) |
28 |
21 25 27
|
3brtr4i |
|- 1Q |