Metamath Proof Explorer


Theorem 1lt3

Description: 1 is less than 3. (Contributed by NM, 26-Sep-2010)

Ref Expression
Assertion 1lt3
|- 1 < 3

Proof

Step Hyp Ref Expression
1 1lt2
 |-  1 < 2
2 2lt3
 |-  2 < 3
3 1re
 |-  1 e. RR
4 2re
 |-  2 e. RR
5 3re
 |-  3 e. RR
6 3 4 5 lttri
 |-  ( ( 1 < 2 /\ 2 < 3 ) -> 1 < 3 )
7 1 2 6 mp2an
 |-  1 < 3