Metamath Proof Explorer


Theorem 1lt7

Description: 1 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 1lt7
|- 1 < 7

Proof

Step Hyp Ref Expression
1 1lt2
 |-  1 < 2
2 2lt7
 |-  2 < 7
3 1re
 |-  1 e. RR
4 2re
 |-  2 e. RR
5 7re
 |-  7 e. RR
6 3 4 5 lttri
 |-  ( ( 1 < 2 /\ 2 < 7 ) -> 1 < 7 )
7 1 2 6 mp2an
 |-  1 < 7