Metamath Proof Explorer


Theorem 1ne0sr

Description: 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion 1ne0sr
|- -. 1R = 0R

Proof

Step Hyp Ref Expression
1 ltsosr
 |-  
2 1sr
 |-  1R e. R.
3 sonr
 |-  ( (  -. 1R 
4 1 2 3 mp2an
 |-  -. 1R 
5 0lt1sr
 |-  0R 
6 breq1
 |-  ( 1R = 0R -> ( 1R  0R 
7 5 6 mpbiri
 |-  ( 1R = 0R -> 1R 
8 4 7 mto
 |-  -. 1R = 0R