Step |
Hyp |
Ref |
Expression |
1 |
|
1ex |
|- 1 e. _V |
2 |
|
fr0g |
|- ( 1 e. _V -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) = 1 ) |
3 |
1 2
|
ax-mp |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) = 1 |
4 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om |
5 |
|
peano1 |
|- (/) e. _om |
6 |
|
fnfvelrn |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) Fn _om /\ (/) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ) |
7 |
4 5 6
|
mp2an |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) ` (/) ) e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
8 |
3 7
|
eqeltrri |
|- 1 e. ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
9 |
|
df-nn |
|- NN = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) |
10 |
|
df-ima |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) " _om ) = ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
11 |
9 10
|
eqtri |
|- NN = ran ( rec ( ( x e. _V |-> ( x + 1 ) ) , 1 ) |` _om ) |
12 |
8 11
|
eleqtrri |
|- 1 e. NN |