Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
|- 1 e. NN |
2 |
|
eleq1 |
|- ( z = 1 -> ( z e. NN <-> 1 e. NN ) ) |
3 |
1 2
|
mpbiri |
|- ( z = 1 -> z e. NN ) |
4 |
|
nnnn0 |
|- ( z e. NN -> z e. NN0 ) |
5 |
|
dvds1 |
|- ( z e. NN0 -> ( z || 1 <-> z = 1 ) ) |
6 |
4 5
|
syl |
|- ( z e. NN -> ( z || 1 <-> z = 1 ) ) |
7 |
6
|
bicomd |
|- ( z e. NN -> ( z = 1 <-> z || 1 ) ) |
8 |
3 7
|
biadanii |
|- ( z = 1 <-> ( z e. NN /\ z || 1 ) ) |
9 |
|
velsn |
|- ( z e. { 1 } <-> z = 1 ) |
10 |
|
breq1 |
|- ( n = z -> ( n || 1 <-> z || 1 ) ) |
11 |
10
|
elrab |
|- ( z e. { n e. NN | n || 1 } <-> ( z e. NN /\ z || 1 ) ) |
12 |
8 9 11
|
3bitr4ri |
|- ( z e. { n e. NN | n || 1 } <-> z e. { 1 } ) |
13 |
12
|
eqriv |
|- { n e. NN | n || 1 } = { 1 } |
14 |
|
1ex |
|- 1 e. _V |
15 |
14
|
ensn1 |
|- { 1 } ~~ 1o |
16 |
13 15
|
eqbrtri |
|- { n e. NN | n || 1 } ~~ 1o |
17 |
|
1sdom2 |
|- 1o ~< 2o |
18 |
|
ensdomtr |
|- ( ( { n e. NN | n || 1 } ~~ 1o /\ 1o ~< 2o ) -> { n e. NN | n || 1 } ~< 2o ) |
19 |
16 17 18
|
mp2an |
|- { n e. NN | n || 1 } ~< 2o |
20 |
|
sdomnen |
|- ( { n e. NN | n || 1 } ~< 2o -> -. { n e. NN | n || 1 } ~~ 2o ) |
21 |
19 20
|
ax-mp |
|- -. { n e. NN | n || 1 } ~~ 2o |
22 |
|
isprm |
|- ( 1 e. Prime <-> ( 1 e. NN /\ { n e. NN | n || 1 } ~~ 2o ) ) |
23 |
1 22
|
mpbiran |
|- ( 1 e. Prime <-> { n e. NN | n || 1 } ~~ 2o ) |
24 |
21 23
|
mtbir |
|- -. 1 e. Prime |