| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nsgtrivd.1 |
|- B = ( Base ` G ) |
| 2 |
|
1nsgtrivd.2 |
|- .0. = ( 0g ` G ) |
| 3 |
|
1nsgtrivd.3 |
|- ( ph -> G e. Grp ) |
| 4 |
|
1nsgtrivd.4 |
|- ( ph -> ( NrmSGrp ` G ) ~~ 1o ) |
| 5 |
1
|
nsgid |
|- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
| 6 |
3 5
|
syl |
|- ( ph -> B e. ( NrmSGrp ` G ) ) |
| 7 |
2
|
0nsg |
|- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
| 8 |
3 7
|
syl |
|- ( ph -> { .0. } e. ( NrmSGrp ` G ) ) |
| 9 |
|
en1eqsn |
|- ( ( { .0. } e. ( NrmSGrp ` G ) /\ ( NrmSGrp ` G ) ~~ 1o ) -> ( NrmSGrp ` G ) = { { .0. } } ) |
| 10 |
8 4 9
|
syl2anc |
|- ( ph -> ( NrmSGrp ` G ) = { { .0. } } ) |
| 11 |
6 10
|
eleqtrd |
|- ( ph -> B e. { { .0. } } ) |
| 12 |
|
snex |
|- { .0. } e. _V |
| 13 |
|
elsn2g |
|- ( { .0. } e. _V -> ( B e. { { .0. } } <-> B = { .0. } ) ) |
| 14 |
12 13
|
mp1i |
|- ( ph -> ( B e. { { .0. } } <-> B = { .0. } ) ) |
| 15 |
11 14
|
mpbid |
|- ( ph -> B = { .0. } ) |