Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019) (Proof shortened by AV, 1-Jul-2022) Remove dependency on ax-10 , ax-11 , ax-12 , ax-un . (Revised by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1oex | |- 1o e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 | |- 1o = { (/) } |
|
| 2 | snex | |- { (/) } e. _V |
|
| 3 | 1 2 | eqeltri | |- 1o e. _V |