Metamath Proof Explorer


Theorem 1on

Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995)

Ref Expression
Assertion 1on
|- 1o e. On

Proof

Step Hyp Ref Expression
1 df-1o
 |-  1o = suc (/)
2 0elon
 |-  (/) e. On
3 2 onsuci
 |-  suc (/) e. On
4 1 3 eqeltri
 |-  1o e. On