Metamath Proof Explorer


Theorem 1onn

Description: The ordinal 1 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 1onnALT . Lemma 2.2 of Schloeder p. 4. (Contributed by NM, 29-Oct-1995) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 1onn
|- 1o e. _om

Proof

Step Hyp Ref Expression
1 1on
 |-  1o e. On
2 1ellim
 |-  ( Lim x -> 1o e. x )
3 2 ax-gen
 |-  A. x ( Lim x -> 1o e. x )
4 elom
 |-  ( 1o e. _om <-> ( 1o e. On /\ A. x ( Lim x -> 1o e. x ) ) )
5 1 3 4 mpbir2an
 |-  1o e. _om