Metamath Proof Explorer


Theorem 1pmatscmul

Description: The scalar product of the identity polynomial matrix with a polynomial is a polynomial matrix. (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses 1pmatscmul.p
|- P = ( Poly1 ` R )
1pmatscmul.c
|- C = ( N Mat P )
1pmatscmul.b
|- B = ( Base ` C )
1pmatscmul.e
|- E = ( Base ` P )
1pmatscmul.m
|- .* = ( .s ` C )
1pmatscmul.1
|- .1. = ( 1r ` C )
Assertion 1pmatscmul
|- ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> ( Q .* .1. ) e. B )

Proof

Step Hyp Ref Expression
1 1pmatscmul.p
 |-  P = ( Poly1 ` R )
2 1pmatscmul.c
 |-  C = ( N Mat P )
3 1pmatscmul.b
 |-  B = ( Base ` C )
4 1pmatscmul.e
 |-  E = ( Base ` P )
5 1pmatscmul.m
 |-  .* = ( .s ` C )
6 1pmatscmul.1
 |-  .1. = ( 1r ` C )
7 1 ply1ring
 |-  ( R e. Ring -> P e. Ring )
8 7 anim2i
 |-  ( ( N e. Fin /\ R e. Ring ) -> ( N e. Fin /\ P e. Ring ) )
9 8 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> ( N e. Fin /\ P e. Ring ) )
10 simp3
 |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> Q e. E )
11 1 2 pmatring
 |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring )
12 11 3adant3
 |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> C e. Ring )
13 3 6 ringidcl
 |-  ( C e. Ring -> .1. e. B )
14 12 13 syl
 |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> .1. e. B )
15 4 2 3 5 matvscl
 |-  ( ( ( N e. Fin /\ P e. Ring ) /\ ( Q e. E /\ .1. e. B ) ) -> ( Q .* .1. ) e. B )
16 9 10 14 15 syl12anc
 |-  ( ( N e. Fin /\ R e. Ring /\ Q e. E ) -> ( Q .* .1. ) e. B )