| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1psubcl.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							1psubcl.c | 
							 |-  C = ( PSubCl ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							ssidd | 
							 |-  ( K e. HL -> A C_ A )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( _|_P ` K ) = ( _|_P ` K )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							pol1N | 
							 |-  ( K e. HL -> ( ( _|_P ` K ) ` A ) = (/) )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( K e. HL -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` A ) ) = ( ( _|_P ` K ) ` (/) ) )  | 
						
						
							| 7 | 
							
								1 4
							 | 
							pol0N | 
							 |-  ( K e. HL -> ( ( _|_P ` K ) ` (/) ) = A )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtrd | 
							 |-  ( K e. HL -> ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` A ) ) = A )  | 
						
						
							| 9 | 
							
								1 4 2
							 | 
							ispsubclN | 
							 |-  ( K e. HL -> ( A e. C <-> ( A C_ A /\ ( ( _|_P ` K ) ` ( ( _|_P ` K ) ` A ) ) = A ) ) )  | 
						
						
							| 10 | 
							
								3 8 9
							 | 
							mpbir2and | 
							 |-  ( K e. HL -> A e. C )  |