Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
|- P = <" X Y "> |
2 |
|
1wlkd.f |
|- F = <" J "> |
3 |
|
1wlkd.x |
|- ( ph -> X e. V ) |
4 |
|
1wlkd.y |
|- ( ph -> Y e. V ) |
5 |
|
1wlkd.l |
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
6 |
|
1wlkd.j |
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
7 |
|
1wlkd.v |
|- V = ( Vtx ` G ) |
8 |
|
1wlkd.i |
|- I = ( iEdg ` G ) |
9 |
1 2 3 4 5 6 7 8
|
1trld |
|- ( ph -> F ( Trails ` G ) P ) |
10 |
|
simpr |
|- ( ( ph /\ F ( Trails ` G ) P ) -> F ( Trails ` G ) P ) |
11 |
1 2
|
1pthdlem1 |
|- Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) |
12 |
11
|
a1i |
|- ( ( ph /\ F ( Trails ` G ) P ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
13 |
1 2
|
1pthdlem2 |
|- ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) |
14 |
13
|
a1i |
|- ( ( ph /\ F ( Trails ` G ) P ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
15 |
|
ispth |
|- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
16 |
10 12 14 15
|
syl3anbrc |
|- ( ( ph /\ F ( Trails ` G ) P ) -> F ( Paths ` G ) P ) |
17 |
9 16
|
mpdan |
|- ( ph -> F ( Paths ` G ) P ) |