Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
|- P = <" X Y "> |
2 |
|
1wlkd.f |
|- F = <" J "> |
3 |
|
fun0 |
|- Fun (/) |
4 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J "> ) |
5 |
|
s1len |
|- ( # ` <" J "> ) = 1 |
6 |
4 5
|
eqtri |
|- ( # ` F ) = 1 |
7 |
6
|
oveq2i |
|- ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 1 ) |
8 |
|
fzo0 |
|- ( 1 ..^ 1 ) = (/) |
9 |
7 8
|
eqtri |
|- ( 1 ..^ ( # ` F ) ) = (/) |
10 |
9
|
reseq2i |
|- ( P |` ( 1 ..^ ( # ` F ) ) ) = ( P |` (/) ) |
11 |
|
res0 |
|- ( P |` (/) ) = (/) |
12 |
10 11
|
eqtri |
|- ( P |` ( 1 ..^ ( # ` F ) ) ) = (/) |
13 |
12
|
cnveqi |
|- `' ( P |` ( 1 ..^ ( # ` F ) ) ) = `' (/) |
14 |
|
cnv0 |
|- `' (/) = (/) |
15 |
13 14
|
eqtri |
|- `' ( P |` ( 1 ..^ ( # ` F ) ) ) = (/) |
16 |
15
|
funeqi |
|- ( Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) <-> Fun (/) ) |
17 |
3 16
|
mpbir |
|- Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) |