Step |
Hyp |
Ref |
Expression |
1 |
|
1pthon2v.v |
|- V = ( Vtx ` G ) |
2 |
|
1pthon2v.e |
|- E = ( Edg ` G ) |
3 |
|
simpl |
|- ( ( A e. V /\ B e. V ) -> A e. V ) |
4 |
3
|
anim2i |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) ) -> ( G e. UHGraph /\ A e. V ) ) |
5 |
4
|
3adant3 |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> ( G e. UHGraph /\ A e. V ) ) |
6 |
5
|
adantl |
|- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> ( G e. UHGraph /\ A e. V ) ) |
7 |
1
|
0pthonv |
|- ( A e. V -> E. f E. p f ( A ( PathsOn ` G ) A ) p ) |
8 |
6 7
|
simpl2im |
|- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> E. f E. p f ( A ( PathsOn ` G ) A ) p ) |
9 |
|
oveq2 |
|- ( B = A -> ( A ( PathsOn ` G ) B ) = ( A ( PathsOn ` G ) A ) ) |
10 |
9
|
eqcoms |
|- ( A = B -> ( A ( PathsOn ` G ) B ) = ( A ( PathsOn ` G ) A ) ) |
11 |
10
|
breqd |
|- ( A = B -> ( f ( A ( PathsOn ` G ) B ) p <-> f ( A ( PathsOn ` G ) A ) p ) ) |
12 |
11
|
2exbidv |
|- ( A = B -> ( E. f E. p f ( A ( PathsOn ` G ) B ) p <-> E. f E. p f ( A ( PathsOn ` G ) A ) p ) ) |
13 |
12
|
adantr |
|- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> ( E. f E. p f ( A ( PathsOn ` G ) B ) p <-> E. f E. p f ( A ( PathsOn ` G ) A ) p ) ) |
14 |
8 13
|
mpbird |
|- ( ( A = B /\ ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
15 |
14
|
ex |
|- ( A = B -> ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
16 |
2
|
eleq2i |
|- ( e e. E <-> e e. ( Edg ` G ) ) |
17 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
18 |
17
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( e e. ( Edg ` G ) <-> E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) ) ) |
19 |
16 18
|
syl5bb |
|- ( G e. UHGraph -> ( e e. E <-> E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) ) ) |
20 |
19
|
3ad2ant1 |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( e e. E <-> E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) ) ) |
21 |
|
s1cli |
|- <" i "> e. Word _V |
22 |
|
s2cli |
|- <" A B "> e. Word _V |
23 |
21 22
|
pm3.2i |
|- ( <" i "> e. Word _V /\ <" A B "> e. Word _V ) |
24 |
|
eqid |
|- <" A B "> = <" A B "> |
25 |
|
eqid |
|- <" i "> = <" i "> |
26 |
|
simpl2l |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> A e. V ) |
27 |
|
simpl2r |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> B e. V ) |
28 |
|
eqneqall |
|- ( A = B -> ( A =/= B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
29 |
28
|
com12 |
|- ( A =/= B -> ( A = B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
30 |
29
|
3ad2ant3 |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A = B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
31 |
30
|
adantr |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> ( A = B -> ( ( iEdg ` G ) ` i ) = { A } ) ) |
32 |
31
|
imp |
|- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) /\ A = B ) -> ( ( iEdg ` G ) ` i ) = { A } ) |
33 |
|
sseq2 |
|- ( e = ( ( iEdg ` G ) ` i ) -> ( { A , B } C_ e <-> { A , B } C_ ( ( iEdg ` G ) ` i ) ) ) |
34 |
33
|
adantl |
|- ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) -> ( { A , B } C_ e <-> { A , B } C_ ( ( iEdg ` G ) ` i ) ) ) |
35 |
34
|
biimpa |
|- ( ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
36 |
35
|
adantl |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
37 |
36
|
adantr |
|- ( ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) /\ A =/= B ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
38 |
24 25 26 27 32 37 1 17
|
1pthond |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> <" i "> ( A ( PathsOn ` G ) B ) <" A B "> ) |
39 |
|
breq12 |
|- ( ( f = <" i "> /\ p = <" A B "> ) -> ( f ( A ( PathsOn ` G ) B ) p <-> <" i "> ( A ( PathsOn ` G ) B ) <" A B "> ) ) |
40 |
39
|
spc2egv |
|- ( ( <" i "> e. Word _V /\ <" A B "> e. Word _V ) -> ( <" i "> ( A ( PathsOn ` G ) B ) <" A B "> -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
41 |
23 38 40
|
mpsyl |
|- ( ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( i e. dom ( iEdg ` G ) /\ e = ( ( iEdg ` G ) ` i ) ) /\ { A , B } C_ e ) ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
42 |
41
|
exp44 |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( i e. dom ( iEdg ` G ) -> ( e = ( ( iEdg ` G ) ` i ) -> ( { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) ) |
43 |
42
|
rexlimdv |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( E. i e. dom ( iEdg ` G ) e = ( ( iEdg ` G ) ` i ) -> ( { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) |
44 |
20 43
|
sylbid |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( e e. E -> ( { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) |
45 |
44
|
rexlimdv |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( E. e e. E { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
46 |
45
|
3exp |
|- ( G e. UHGraph -> ( ( A e. V /\ B e. V ) -> ( A =/= B -> ( E. e e. E { A , B } C_ e -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) ) |
47 |
46
|
com34 |
|- ( G e. UHGraph -> ( ( A e. V /\ B e. V ) -> ( E. e e. E { A , B } C_ e -> ( A =/= B -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) ) ) |
48 |
47
|
3imp |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> ( A =/= B -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
49 |
48
|
com12 |
|- ( A =/= B -> ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) ) |
50 |
15 49
|
pm2.61ine |
|- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |