Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
|- P = <" X Y "> |
2 |
|
1wlkd.f |
|- F = <" J "> |
3 |
|
1wlkd.x |
|- ( ph -> X e. V ) |
4 |
|
1wlkd.y |
|- ( ph -> Y e. V ) |
5 |
|
1wlkd.l |
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
6 |
|
1wlkd.j |
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
7 |
|
1wlkd.v |
|- V = ( Vtx ` G ) |
8 |
|
1wlkd.i |
|- I = ( iEdg ` G ) |
9 |
1 2 3 4 5 6 7 8
|
1wlkd |
|- ( ph -> F ( Walks ` G ) P ) |
10 |
1
|
fveq1i |
|- ( P ` 0 ) = ( <" X Y "> ` 0 ) |
11 |
|
s2fv0 |
|- ( X e. V -> ( <" X Y "> ` 0 ) = X ) |
12 |
10 11
|
eqtrid |
|- ( X e. V -> ( P ` 0 ) = X ) |
13 |
3 12
|
syl |
|- ( ph -> ( P ` 0 ) = X ) |
14 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J "> ) |
15 |
|
s1len |
|- ( # ` <" J "> ) = 1 |
16 |
14 15
|
eqtri |
|- ( # ` F ) = 1 |
17 |
1 16
|
fveq12i |
|- ( P ` ( # ` F ) ) = ( <" X Y "> ` 1 ) |
18 |
|
s2fv1 |
|- ( Y e. V -> ( <" X Y "> ` 1 ) = Y ) |
19 |
4 18
|
syl |
|- ( ph -> ( <" X Y "> ` 1 ) = Y ) |
20 |
17 19
|
eqtrid |
|- ( ph -> ( P ` ( # ` F ) ) = Y ) |
21 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
22 |
|
3simpc |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) |
23 |
9 21 22
|
3syl |
|- ( ph -> ( F e. _V /\ P e. _V ) ) |
24 |
3 4 23
|
jca31 |
|- ( ph -> ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) ) |
25 |
7
|
iswlkon |
|- ( ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( X ( WalksOn ` G ) Y ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = X /\ ( P ` ( # ` F ) ) = Y ) ) ) |
26 |
24 25
|
syl |
|- ( ph -> ( F ( X ( WalksOn ` G ) Y ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = X /\ ( P ` ( # ` F ) ) = Y ) ) ) |
27 |
9 13 20 26
|
mpbir3and |
|- ( ph -> F ( X ( WalksOn ` G ) Y ) P ) |
28 |
1 2 3 4 5 6 7 8
|
1trld |
|- ( ph -> F ( Trails ` G ) P ) |
29 |
7
|
istrlson |
|- ( ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( X ( TrailsOn ` G ) Y ) P <-> ( F ( X ( WalksOn ` G ) Y ) P /\ F ( Trails ` G ) P ) ) ) |
30 |
24 29
|
syl |
|- ( ph -> ( F ( X ( TrailsOn ` G ) Y ) P <-> ( F ( X ( WalksOn ` G ) Y ) P /\ F ( Trails ` G ) P ) ) ) |
31 |
27 28 30
|
mpbir2and |
|- ( ph -> F ( X ( TrailsOn ` G ) Y ) P ) |
32 |
1 2 3 4 5 6 7 8
|
1pthd |
|- ( ph -> F ( Paths ` G ) P ) |
33 |
3
|
adantl |
|- ( ( ( F e. _V /\ P e. _V ) /\ ph ) -> X e. V ) |
34 |
4
|
adantl |
|- ( ( ( F e. _V /\ P e. _V ) /\ ph ) -> Y e. V ) |
35 |
|
simpl |
|- ( ( ( F e. _V /\ P e. _V ) /\ ph ) -> ( F e. _V /\ P e. _V ) ) |
36 |
33 34 35
|
jca31 |
|- ( ( ( F e. _V /\ P e. _V ) /\ ph ) -> ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) ) |
37 |
36
|
ex |
|- ( ( F e. _V /\ P e. _V ) -> ( ph -> ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) ) ) |
38 |
21 22 37
|
3syl |
|- ( F ( Walks ` G ) P -> ( ph -> ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) ) ) |
39 |
9 38
|
mpcom |
|- ( ph -> ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) ) |
40 |
7
|
ispthson |
|- ( ( ( X e. V /\ Y e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( X ( PathsOn ` G ) Y ) P <-> ( F ( X ( TrailsOn ` G ) Y ) P /\ F ( Paths ` G ) P ) ) ) |
41 |
39 40
|
syl |
|- ( ph -> ( F ( X ( PathsOn ` G ) Y ) P <-> ( F ( X ( TrailsOn ` G ) Y ) P /\ F ( Paths ` G ) P ) ) ) |
42 |
31 32 41
|
mpbir2and |
|- ( ph -> F ( X ( PathsOn ` G ) Y ) P ) |