| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
cnre |
|- ( 1 e. CC -> E. a e. RR E. b e. RR 1 = ( a + ( _i x. b ) ) ) |
| 4 |
2 3
|
ax-mp |
|- E. a e. RR E. b e. RR 1 = ( a + ( _i x. b ) ) |
| 5 |
|
neeq1 |
|- ( 1 = ( a + ( _i x. b ) ) -> ( 1 =/= 0 <-> ( a + ( _i x. b ) ) =/= 0 ) ) |
| 6 |
5
|
biimpcd |
|- ( 1 =/= 0 -> ( 1 = ( a + ( _i x. b ) ) -> ( a + ( _i x. b ) ) =/= 0 ) ) |
| 7 |
|
0cn |
|- 0 e. CC |
| 8 |
|
cnre |
|- ( 0 e. CC -> E. c e. RR E. d e. RR 0 = ( c + ( _i x. d ) ) ) |
| 9 |
7 8
|
ax-mp |
|- E. c e. RR E. d e. RR 0 = ( c + ( _i x. d ) ) |
| 10 |
|
neeq2 |
|- ( 0 = ( c + ( _i x. d ) ) -> ( ( a + ( _i x. b ) ) =/= 0 <-> ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 11 |
10
|
biimpcd |
|- ( ( a + ( _i x. b ) ) =/= 0 -> ( 0 = ( c + ( _i x. d ) ) -> ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 12 |
11
|
reximdv |
|- ( ( a + ( _i x. b ) ) =/= 0 -> ( E. d e. RR 0 = ( c + ( _i x. d ) ) -> E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 13 |
12
|
reximdv |
|- ( ( a + ( _i x. b ) ) =/= 0 -> ( E. c e. RR E. d e. RR 0 = ( c + ( _i x. d ) ) -> E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 14 |
6 9 13
|
syl6mpi |
|- ( 1 =/= 0 -> ( 1 = ( a + ( _i x. b ) ) -> E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 15 |
14
|
reximdv |
|- ( 1 =/= 0 -> ( E. b e. RR 1 = ( a + ( _i x. b ) ) -> E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 16 |
15
|
reximdv |
|- ( 1 =/= 0 -> ( E. a e. RR E. b e. RR 1 = ( a + ( _i x. b ) ) -> E. a e. RR E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) ) |
| 17 |
4 16
|
mpi |
|- ( 1 =/= 0 -> E. a e. RR E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) ) |
| 18 |
|
ioran |
|- ( -. ( a =/= c \/ b =/= d ) <-> ( -. a =/= c /\ -. b =/= d ) ) |
| 19 |
|
df-ne |
|- ( a =/= c <-> -. a = c ) |
| 20 |
19
|
con2bii |
|- ( a = c <-> -. a =/= c ) |
| 21 |
|
df-ne |
|- ( b =/= d <-> -. b = d ) |
| 22 |
21
|
con2bii |
|- ( b = d <-> -. b =/= d ) |
| 23 |
20 22
|
anbi12i |
|- ( ( a = c /\ b = d ) <-> ( -. a =/= c /\ -. b =/= d ) ) |
| 24 |
18 23
|
bitr4i |
|- ( -. ( a =/= c \/ b =/= d ) <-> ( a = c /\ b = d ) ) |
| 25 |
|
id |
|- ( a = c -> a = c ) |
| 26 |
|
oveq2 |
|- ( b = d -> ( _i x. b ) = ( _i x. d ) ) |
| 27 |
25 26
|
oveqan12d |
|- ( ( a = c /\ b = d ) -> ( a + ( _i x. b ) ) = ( c + ( _i x. d ) ) ) |
| 28 |
24 27
|
sylbi |
|- ( -. ( a =/= c \/ b =/= d ) -> ( a + ( _i x. b ) ) = ( c + ( _i x. d ) ) ) |
| 29 |
28
|
necon1ai |
|- ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> ( a =/= c \/ b =/= d ) ) |
| 30 |
|
neeq1 |
|- ( x = a -> ( x =/= y <-> a =/= y ) ) |
| 31 |
|
neeq2 |
|- ( y = c -> ( a =/= y <-> a =/= c ) ) |
| 32 |
30 31
|
rspc2ev |
|- ( ( a e. RR /\ c e. RR /\ a =/= c ) -> E. x e. RR E. y e. RR x =/= y ) |
| 33 |
32
|
3expia |
|- ( ( a e. RR /\ c e. RR ) -> ( a =/= c -> E. x e. RR E. y e. RR x =/= y ) ) |
| 34 |
33
|
ad2ant2r |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( a =/= c -> E. x e. RR E. y e. RR x =/= y ) ) |
| 35 |
|
neeq1 |
|- ( x = b -> ( x =/= y <-> b =/= y ) ) |
| 36 |
|
neeq2 |
|- ( y = d -> ( b =/= y <-> b =/= d ) ) |
| 37 |
35 36
|
rspc2ev |
|- ( ( b e. RR /\ d e. RR /\ b =/= d ) -> E. x e. RR E. y e. RR x =/= y ) |
| 38 |
37
|
3expia |
|- ( ( b e. RR /\ d e. RR ) -> ( b =/= d -> E. x e. RR E. y e. RR x =/= y ) ) |
| 39 |
38
|
ad2ant2l |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( b =/= d -> E. x e. RR E. y e. RR x =/= y ) ) |
| 40 |
34 39
|
jaod |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( ( a =/= c \/ b =/= d ) -> E. x e. RR E. y e. RR x =/= y ) ) |
| 41 |
29 40
|
syl5 |
|- ( ( ( a e. RR /\ b e. RR ) /\ ( c e. RR /\ d e. RR ) ) -> ( ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> E. x e. RR E. y e. RR x =/= y ) ) |
| 42 |
41
|
rexlimdvva |
|- ( ( a e. RR /\ b e. RR ) -> ( E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> E. x e. RR E. y e. RR x =/= y ) ) |
| 43 |
42
|
rexlimivv |
|- ( E. a e. RR E. b e. RR E. c e. RR E. d e. RR ( a + ( _i x. b ) ) =/= ( c + ( _i x. d ) ) -> E. x e. RR E. y e. RR x =/= y ) |
| 44 |
1 17 43
|
mp2b |
|- E. x e. RR E. y e. RR x =/= y |
| 45 |
|
eqtr3 |
|- ( ( x = 0 /\ y = 0 ) -> x = y ) |
| 46 |
45
|
ex |
|- ( x = 0 -> ( y = 0 -> x = y ) ) |
| 47 |
46
|
necon3d |
|- ( x = 0 -> ( x =/= y -> y =/= 0 ) ) |
| 48 |
|
neeq1 |
|- ( z = y -> ( z =/= 0 <-> y =/= 0 ) ) |
| 49 |
48
|
rspcev |
|- ( ( y e. RR /\ y =/= 0 ) -> E. z e. RR z =/= 0 ) |
| 50 |
49
|
expcom |
|- ( y =/= 0 -> ( y e. RR -> E. z e. RR z =/= 0 ) ) |
| 51 |
47 50
|
syl6 |
|- ( x = 0 -> ( x =/= y -> ( y e. RR -> E. z e. RR z =/= 0 ) ) ) |
| 52 |
51
|
com23 |
|- ( x = 0 -> ( y e. RR -> ( x =/= y -> E. z e. RR z =/= 0 ) ) ) |
| 53 |
52
|
adantld |
|- ( x = 0 -> ( ( x e. RR /\ y e. RR ) -> ( x =/= y -> E. z e. RR z =/= 0 ) ) ) |
| 54 |
|
neeq1 |
|- ( z = x -> ( z =/= 0 <-> x =/= 0 ) ) |
| 55 |
54
|
rspcev |
|- ( ( x e. RR /\ x =/= 0 ) -> E. z e. RR z =/= 0 ) |
| 56 |
55
|
expcom |
|- ( x =/= 0 -> ( x e. RR -> E. z e. RR z =/= 0 ) ) |
| 57 |
56
|
adantrd |
|- ( x =/= 0 -> ( ( x e. RR /\ y e. RR ) -> E. z e. RR z =/= 0 ) ) |
| 58 |
57
|
a1dd |
|- ( x =/= 0 -> ( ( x e. RR /\ y e. RR ) -> ( x =/= y -> E. z e. RR z =/= 0 ) ) ) |
| 59 |
53 58
|
pm2.61ine |
|- ( ( x e. RR /\ y e. RR ) -> ( x =/= y -> E. z e. RR z =/= 0 ) ) |
| 60 |
59
|
rexlimivv |
|- ( E. x e. RR E. y e. RR x =/= y -> E. z e. RR z =/= 0 ) |
| 61 |
|
ax-rrecex |
|- ( ( z e. RR /\ z =/= 0 ) -> E. x e. RR ( z x. x ) = 1 ) |
| 62 |
|
remulcl |
|- ( ( z e. RR /\ x e. RR ) -> ( z x. x ) e. RR ) |
| 63 |
62
|
adantlr |
|- ( ( ( z e. RR /\ z =/= 0 ) /\ x e. RR ) -> ( z x. x ) e. RR ) |
| 64 |
|
eleq1 |
|- ( ( z x. x ) = 1 -> ( ( z x. x ) e. RR <-> 1 e. RR ) ) |
| 65 |
63 64
|
syl5ibcom |
|- ( ( ( z e. RR /\ z =/= 0 ) /\ x e. RR ) -> ( ( z x. x ) = 1 -> 1 e. RR ) ) |
| 66 |
65
|
rexlimdva |
|- ( ( z e. RR /\ z =/= 0 ) -> ( E. x e. RR ( z x. x ) = 1 -> 1 e. RR ) ) |
| 67 |
61 66
|
mpd |
|- ( ( z e. RR /\ z =/= 0 ) -> 1 e. RR ) |
| 68 |
67
|
rexlimiva |
|- ( E. z e. RR z =/= 0 -> 1 e. RR ) |
| 69 |
44 60 68
|
mp2b |
|- 1 e. RR |