Step |
Hyp |
Ref |
Expression |
1 |
|
1rinv.1 |
|- I = ( invr ` R ) |
2 |
|
1rinv.2 |
|- .1. = ( 1r ` R ) |
3 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
4 |
3 2
|
1unit |
|- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
3 1 5
|
ringinvcl |
|- ( ( R e. Ring /\ .1. e. ( Unit ` R ) ) -> ( I ` .1. ) e. ( Base ` R ) ) |
7 |
4 6
|
mpdan |
|- ( R e. Ring -> ( I ` .1. ) e. ( Base ` R ) ) |
8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
9 |
5 8 2
|
ringlidm |
|- ( ( R e. Ring /\ ( I ` .1. ) e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( I ` .1. ) ) = ( I ` .1. ) ) |
10 |
7 9
|
mpdan |
|- ( R e. Ring -> ( .1. ( .r ` R ) ( I ` .1. ) ) = ( I ` .1. ) ) |
11 |
3 1 8 2
|
unitrinv |
|- ( ( R e. Ring /\ .1. e. ( Unit ` R ) ) -> ( .1. ( .r ` R ) ( I ` .1. ) ) = .1. ) |
12 |
4 11
|
mpdan |
|- ( R e. Ring -> ( .1. ( .r ` R ) ( I ` .1. ) ) = .1. ) |
13 |
10 12
|
eqtr3d |
|- ( R e. Ring -> ( I ` .1. ) = .1. ) |