Metamath Proof Explorer


Theorem 1rinv

Description: The inverse of the identity is the identity. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses 1rinv.1
|- I = ( invr ` R )
1rinv.2
|- .1. = ( 1r ` R )
Assertion 1rinv
|- ( R e. Ring -> ( I ` .1. ) = .1. )

Proof

Step Hyp Ref Expression
1 1rinv.1
 |-  I = ( invr ` R )
2 1rinv.2
 |-  .1. = ( 1r ` R )
3 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
4 3 2 1unit
 |-  ( R e. Ring -> .1. e. ( Unit ` R ) )
5 eqid
 |-  ( Base ` R ) = ( Base ` R )
6 3 1 5 ringinvcl
 |-  ( ( R e. Ring /\ .1. e. ( Unit ` R ) ) -> ( I ` .1. ) e. ( Base ` R ) )
7 4 6 mpdan
 |-  ( R e. Ring -> ( I ` .1. ) e. ( Base ` R ) )
8 eqid
 |-  ( .r ` R ) = ( .r ` R )
9 5 8 2 ringlidm
 |-  ( ( R e. Ring /\ ( I ` .1. ) e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( I ` .1. ) ) = ( I ` .1. ) )
10 7 9 mpdan
 |-  ( R e. Ring -> ( .1. ( .r ` R ) ( I ` .1. ) ) = ( I ` .1. ) )
11 3 1 8 2 unitrinv
 |-  ( ( R e. Ring /\ .1. e. ( Unit ` R ) ) -> ( .1. ( .r ` R ) ( I ` .1. ) ) = .1. )
12 4 11 mpdan
 |-  ( R e. Ring -> ( .1. ( .r ` R ) ( I ` .1. ) ) = .1. )
13 10 12 eqtr3d
 |-  ( R e. Ring -> ( I ` .1. ) = .1. )