Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1rrg.1 | |- .1. = ( 1r ` R ) |
|
1rrg.e | |- E = ( RLReg ` R ) |
||
1rrg.r | |- ( ph -> R e. Ring ) |
||
Assertion | 1rrg | |- ( ph -> .1. e. E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1rrg.1 | |- .1. = ( 1r ` R ) |
|
2 | 1rrg.e | |- E = ( RLReg ` R ) |
|
3 | 1rrg.r | |- ( ph -> R e. Ring ) |
|
4 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
5 | 2 4 | unitrrg | |- ( R e. Ring -> ( Unit ` R ) C_ E ) |
6 | 4 1 | 1unit | |- ( R e. Ring -> .1. e. ( Unit ` R ) ) |
7 | 5 6 | sseldd | |- ( R e. Ring -> .1. e. E ) |
8 | 3 7 | syl | |- ( ph -> .1. e. E ) |