Metamath Proof Explorer


Theorem 1rrg

Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025)

Ref Expression
Hypotheses 1rrg.1
|- .1. = ( 1r ` R )
1rrg.e
|- E = ( RLReg ` R )
1rrg.r
|- ( ph -> R e. Ring )
Assertion 1rrg
|- ( ph -> .1. e. E )

Proof

Step Hyp Ref Expression
1 1rrg.1
 |-  .1. = ( 1r ` R )
2 1rrg.e
 |-  E = ( RLReg ` R )
3 1rrg.r
 |-  ( ph -> R e. Ring )
4 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
5 2 4 unitrrg
 |-  ( R e. Ring -> ( Unit ` R ) C_ E )
6 4 1 1unit
 |-  ( R e. Ring -> .1. e. ( Unit ` R ) )
7 5 6 sseldd
 |-  ( R e. Ring -> .1. e. E )
8 3 7 syl
 |-  ( ph -> .1. e. E )