Metamath Proof Explorer


Theorem 1sdom2dom

Description: Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024)

Ref Expression
Assertion 1sdom2dom
|- ( 1o ~< A <-> 2o ~<_ A )

Proof

Step Hyp Ref Expression
1 relsdom
 |-  Rel ~<
2 1 brrelex2i
 |-  ( 1o ~< A -> A e. _V )
3 sdomdom
 |-  ( 1o ~< A -> 1o ~<_ A )
4 0sdom1dom
 |-  ( (/) ~< A <-> 1o ~<_ A )
5 3 4 sylibr
 |-  ( 1o ~< A -> (/) ~< A )
6 0sdomg
 |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) )
7 2 6 syl
 |-  ( 1o ~< A -> ( (/) ~< A <-> A =/= (/) ) )
8 5 7 mpbid
 |-  ( 1o ~< A -> A =/= (/) )
9 n0snor2el
 |-  ( A =/= (/) -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) )
10 8 9 syl
 |-  ( 1o ~< A -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) )
11 sdomnen
 |-  ( 1o ~< A -> -. 1o ~~ A )
12 df1o2
 |-  1o = { (/) }
13 0ex
 |-  (/) e. _V
14 vex
 |-  x e. _V
15 en2sn
 |-  ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } )
16 13 14 15 mp2an
 |-  { (/) } ~~ { x }
17 12 16 eqbrtri
 |-  1o ~~ { x }
18 breq2
 |-  ( A = { x } -> ( 1o ~~ A <-> 1o ~~ { x } ) )
19 17 18 mpbiri
 |-  ( A = { x } -> 1o ~~ A )
20 19 exlimiv
 |-  ( E. x A = { x } -> 1o ~~ A )
21 11 20 nsyl
 |-  ( 1o ~< A -> -. E. x A = { x } )
22 10 21 olcnd
 |-  ( 1o ~< A -> E. x e. A E. y e. A x =/= y )
23 rex2dom
 |-  ( ( A e. _V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A )
24 2 22 23 syl2anc
 |-  ( 1o ~< A -> 2o ~<_ A )
25 snsspr1
 |-  { (/) } C_ { (/) , 1o }
26 df2o3
 |-  2o = { (/) , 1o }
27 25 12 26 3sstr4i
 |-  1o C_ 2o
28 domssl
 |-  ( ( 1o C_ 2o /\ 2o ~<_ A ) -> 1o ~<_ A )
29 27 28 mpan
 |-  ( 2o ~<_ A -> 1o ~<_ A )
30 snnen2o
 |-  -. { y } ~~ 2o
31 13 a1i
 |-  ( T. -> (/) e. _V )
32 1oex
 |-  1o e. _V
33 32 a1i
 |-  ( T. -> 1o e. _V )
34 1n0
 |-  1o =/= (/)
35 34 nesymi
 |-  -. (/) = 1o
36 35 a1i
 |-  ( T. -> -. (/) = 1o )
37 31 33 36 enpr2d
 |-  ( T. -> { (/) , 1o } ~~ 2o )
38 37 mptru
 |-  { (/) , 1o } ~~ 2o
39 26 38 eqbrtri
 |-  2o ~~ 2o
40 breq1
 |-  ( 2o = { y } -> ( 2o ~~ 2o <-> { y } ~~ 2o ) )
41 39 40 mpbii
 |-  ( 2o = { y } -> { y } ~~ 2o )
42 30 41 mto
 |-  -. 2o = { y }
43 42 nex
 |-  -. E. y 2o = { y }
44 2on0
 |-  2o =/= (/)
45 f1cdmsn
 |-  ( ( f : 2o -1-1-> { x } /\ 2o =/= (/) ) -> E. y 2o = { y } )
46 44 45 mpan2
 |-  ( f : 2o -1-1-> { x } -> E. y 2o = { y } )
47 43 46 mto
 |-  -. f : 2o -1-1-> { x }
48 47 nex
 |-  -. E. f f : 2o -1-1-> { x }
49 brdomi
 |-  ( 2o ~<_ { x } -> E. f f : 2o -1-1-> { x } )
50 48 49 mto
 |-  -. 2o ~<_ { x }
51 breq2
 |-  ( A = { x } -> ( 2o ~<_ A <-> 2o ~<_ { x } ) )
52 50 51 mtbiri
 |-  ( A = { x } -> -. 2o ~<_ A )
53 52 con2i
 |-  ( 2o ~<_ A -> -. A = { x } )
54 53 nexdv
 |-  ( 2o ~<_ A -> -. E. x A = { x } )
55 reldom
 |-  Rel ~<_
56 55 brrelex2i
 |-  ( 2o ~<_ A -> A e. _V )
57 breng
 |-  ( ( 1o e. _V /\ A e. _V ) -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) )
58 32 57 mpan
 |-  ( A e. _V -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) )
59 56 58 syl
 |-  ( 2o ~<_ A -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) )
60 29 4 sylibr
 |-  ( 2o ~<_ A -> (/) ~< A )
61 56 6 syl
 |-  ( 2o ~<_ A -> ( (/) ~< A <-> A =/= (/) ) )
62 60 61 mpbid
 |-  ( 2o ~<_ A -> A =/= (/) )
63 f1ocnv
 |-  ( f : 1o -1-1-onto-> A -> `' f : A -1-1-onto-> 1o )
64 f1of1
 |-  ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> 1o )
65 f1eq3
 |-  ( 1o = { (/) } -> ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) )
66 12 65 ax-mp
 |-  ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } )
67 64 66 sylib
 |-  ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> { (/) } )
68 63 67 syl
 |-  ( f : 1o -1-1-onto-> A -> `' f : A -1-1-> { (/) } )
69 f1cdmsn
 |-  ( ( `' f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } )
70 68 69 sylan
 |-  ( ( f : 1o -1-1-onto-> A /\ A =/= (/) ) -> E. x A = { x } )
71 70 expcom
 |-  ( A =/= (/) -> ( f : 1o -1-1-onto-> A -> E. x A = { x } ) )
72 71 exlimdv
 |-  ( A =/= (/) -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) )
73 62 72 syl
 |-  ( 2o ~<_ A -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) )
74 59 73 sylbid
 |-  ( 2o ~<_ A -> ( 1o ~~ A -> E. x A = { x } ) )
75 54 74 mtod
 |-  ( 2o ~<_ A -> -. 1o ~~ A )
76 brsdom
 |-  ( 1o ~< A <-> ( 1o ~<_ A /\ -. 1o ~~ A ) )
77 29 75 76 sylanbrc
 |-  ( 2o ~<_ A -> 1o ~< A )
78 24 77 impbii
 |-  ( 1o ~< A <-> 2o ~<_ A )