Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
|- Rel ~< |
2 |
1
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
3 |
|
sdomdom |
|- ( 1o ~< A -> 1o ~<_ A ) |
4 |
|
0sdom1dom |
|- ( (/) ~< A <-> 1o ~<_ A ) |
5 |
3 4
|
sylibr |
|- ( 1o ~< A -> (/) ~< A ) |
6 |
|
0sdomg |
|- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
7 |
2 6
|
syl |
|- ( 1o ~< A -> ( (/) ~< A <-> A =/= (/) ) ) |
8 |
5 7
|
mpbid |
|- ( 1o ~< A -> A =/= (/) ) |
9 |
|
n0snor2el |
|- ( A =/= (/) -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) ) |
10 |
8 9
|
syl |
|- ( 1o ~< A -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) ) |
11 |
|
sdomnen |
|- ( 1o ~< A -> -. 1o ~~ A ) |
12 |
|
df1o2 |
|- 1o = { (/) } |
13 |
|
0ex |
|- (/) e. _V |
14 |
|
vex |
|- x e. _V |
15 |
|
en2sn |
|- ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) |
16 |
13 14 15
|
mp2an |
|- { (/) } ~~ { x } |
17 |
12 16
|
eqbrtri |
|- 1o ~~ { x } |
18 |
|
breq2 |
|- ( A = { x } -> ( 1o ~~ A <-> 1o ~~ { x } ) ) |
19 |
17 18
|
mpbiri |
|- ( A = { x } -> 1o ~~ A ) |
20 |
19
|
exlimiv |
|- ( E. x A = { x } -> 1o ~~ A ) |
21 |
11 20
|
nsyl |
|- ( 1o ~< A -> -. E. x A = { x } ) |
22 |
10 21
|
olcnd |
|- ( 1o ~< A -> E. x e. A E. y e. A x =/= y ) |
23 |
|
rex2dom |
|- ( ( A e. _V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |
24 |
2 22 23
|
syl2anc |
|- ( 1o ~< A -> 2o ~<_ A ) |
25 |
|
snsspr1 |
|- { (/) } C_ { (/) , 1o } |
26 |
|
df2o3 |
|- 2o = { (/) , 1o } |
27 |
25 12 26
|
3sstr4i |
|- 1o C_ 2o |
28 |
|
domssl |
|- ( ( 1o C_ 2o /\ 2o ~<_ A ) -> 1o ~<_ A ) |
29 |
27 28
|
mpan |
|- ( 2o ~<_ A -> 1o ~<_ A ) |
30 |
|
snnen2o |
|- -. { y } ~~ 2o |
31 |
13
|
a1i |
|- ( T. -> (/) e. _V ) |
32 |
|
1oex |
|- 1o e. _V |
33 |
32
|
a1i |
|- ( T. -> 1o e. _V ) |
34 |
|
1n0 |
|- 1o =/= (/) |
35 |
34
|
nesymi |
|- -. (/) = 1o |
36 |
35
|
a1i |
|- ( T. -> -. (/) = 1o ) |
37 |
31 33 36
|
enpr2d |
|- ( T. -> { (/) , 1o } ~~ 2o ) |
38 |
37
|
mptru |
|- { (/) , 1o } ~~ 2o |
39 |
26 38
|
eqbrtri |
|- 2o ~~ 2o |
40 |
|
breq1 |
|- ( 2o = { y } -> ( 2o ~~ 2o <-> { y } ~~ 2o ) ) |
41 |
39 40
|
mpbii |
|- ( 2o = { y } -> { y } ~~ 2o ) |
42 |
30 41
|
mto |
|- -. 2o = { y } |
43 |
42
|
nex |
|- -. E. y 2o = { y } |
44 |
|
2on0 |
|- 2o =/= (/) |
45 |
|
f1cdmsn |
|- ( ( f : 2o -1-1-> { x } /\ 2o =/= (/) ) -> E. y 2o = { y } ) |
46 |
44 45
|
mpan2 |
|- ( f : 2o -1-1-> { x } -> E. y 2o = { y } ) |
47 |
43 46
|
mto |
|- -. f : 2o -1-1-> { x } |
48 |
47
|
nex |
|- -. E. f f : 2o -1-1-> { x } |
49 |
|
brdomi |
|- ( 2o ~<_ { x } -> E. f f : 2o -1-1-> { x } ) |
50 |
48 49
|
mto |
|- -. 2o ~<_ { x } |
51 |
|
breq2 |
|- ( A = { x } -> ( 2o ~<_ A <-> 2o ~<_ { x } ) ) |
52 |
50 51
|
mtbiri |
|- ( A = { x } -> -. 2o ~<_ A ) |
53 |
52
|
con2i |
|- ( 2o ~<_ A -> -. A = { x } ) |
54 |
53
|
nexdv |
|- ( 2o ~<_ A -> -. E. x A = { x } ) |
55 |
|
reldom |
|- Rel ~<_ |
56 |
55
|
brrelex2i |
|- ( 2o ~<_ A -> A e. _V ) |
57 |
|
breng |
|- ( ( 1o e. _V /\ A e. _V ) -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) |
58 |
32 57
|
mpan |
|- ( A e. _V -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) |
59 |
56 58
|
syl |
|- ( 2o ~<_ A -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) |
60 |
29 4
|
sylibr |
|- ( 2o ~<_ A -> (/) ~< A ) |
61 |
56 6
|
syl |
|- ( 2o ~<_ A -> ( (/) ~< A <-> A =/= (/) ) ) |
62 |
60 61
|
mpbid |
|- ( 2o ~<_ A -> A =/= (/) ) |
63 |
|
f1ocnv |
|- ( f : 1o -1-1-onto-> A -> `' f : A -1-1-onto-> 1o ) |
64 |
|
f1of1 |
|- ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> 1o ) |
65 |
|
f1eq3 |
|- ( 1o = { (/) } -> ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) ) |
66 |
12 65
|
ax-mp |
|- ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) |
67 |
64 66
|
sylib |
|- ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> { (/) } ) |
68 |
63 67
|
syl |
|- ( f : 1o -1-1-onto-> A -> `' f : A -1-1-> { (/) } ) |
69 |
|
f1cdmsn |
|- ( ( `' f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } ) |
70 |
68 69
|
sylan |
|- ( ( f : 1o -1-1-onto-> A /\ A =/= (/) ) -> E. x A = { x } ) |
71 |
70
|
expcom |
|- ( A =/= (/) -> ( f : 1o -1-1-onto-> A -> E. x A = { x } ) ) |
72 |
71
|
exlimdv |
|- ( A =/= (/) -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) ) |
73 |
62 72
|
syl |
|- ( 2o ~<_ A -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) ) |
74 |
59 73
|
sylbid |
|- ( 2o ~<_ A -> ( 1o ~~ A -> E. x A = { x } ) ) |
75 |
54 74
|
mtod |
|- ( 2o ~<_ A -> -. 1o ~~ A ) |
76 |
|
brsdom |
|- ( 1o ~< A <-> ( 1o ~<_ A /\ -. 1o ~~ A ) ) |
77 |
29 75 76
|
sylanbrc |
|- ( 2o ~<_ A -> 1o ~< A ) |
78 |
24 77
|
impbii |
|- ( 1o ~< A <-> 2o ~<_ A ) |