| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsdom |  |-  Rel ~< | 
						
							| 2 | 1 | brrelex2i |  |-  ( 1o ~< A -> A e. _V ) | 
						
							| 3 |  | sdomdom |  |-  ( 1o ~< A -> 1o ~<_ A ) | 
						
							| 4 |  | 0sdom1dom |  |-  ( (/) ~< A <-> 1o ~<_ A ) | 
						
							| 5 | 3 4 | sylibr |  |-  ( 1o ~< A -> (/) ~< A ) | 
						
							| 6 |  | 0sdomg |  |-  ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 7 | 2 6 | syl |  |-  ( 1o ~< A -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 8 | 5 7 | mpbid |  |-  ( 1o ~< A -> A =/= (/) ) | 
						
							| 9 |  | n0snor2el |  |-  ( A =/= (/) -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( 1o ~< A -> ( E. x e. A E. y e. A x =/= y \/ E. x A = { x } ) ) | 
						
							| 11 |  | sdomnen |  |-  ( 1o ~< A -> -. 1o ~~ A ) | 
						
							| 12 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 13 |  | 0ex |  |-  (/) e. _V | 
						
							| 14 |  | vex |  |-  x e. _V | 
						
							| 15 |  | en2sn |  |-  ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  { (/) } ~~ { x } | 
						
							| 17 | 12 16 | eqbrtri |  |-  1o ~~ { x } | 
						
							| 18 |  | breq2 |  |-  ( A = { x } -> ( 1o ~~ A <-> 1o ~~ { x } ) ) | 
						
							| 19 | 17 18 | mpbiri |  |-  ( A = { x } -> 1o ~~ A ) | 
						
							| 20 | 19 | exlimiv |  |-  ( E. x A = { x } -> 1o ~~ A ) | 
						
							| 21 | 11 20 | nsyl |  |-  ( 1o ~< A -> -. E. x A = { x } ) | 
						
							| 22 | 10 21 | olcnd |  |-  ( 1o ~< A -> E. x e. A E. y e. A x =/= y ) | 
						
							| 23 |  | rex2dom |  |-  ( ( A e. _V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) | 
						
							| 24 | 2 22 23 | syl2anc |  |-  ( 1o ~< A -> 2o ~<_ A ) | 
						
							| 25 |  | snsspr1 |  |-  { (/) } C_ { (/) , 1o } | 
						
							| 26 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 27 | 25 12 26 | 3sstr4i |  |-  1o C_ 2o | 
						
							| 28 |  | domssl |  |-  ( ( 1o C_ 2o /\ 2o ~<_ A ) -> 1o ~<_ A ) | 
						
							| 29 | 27 28 | mpan |  |-  ( 2o ~<_ A -> 1o ~<_ A ) | 
						
							| 30 |  | snnen2o |  |-  -. { y } ~~ 2o | 
						
							| 31 | 13 | a1i |  |-  ( T. -> (/) e. _V ) | 
						
							| 32 |  | 1oex |  |-  1o e. _V | 
						
							| 33 | 32 | a1i |  |-  ( T. -> 1o e. _V ) | 
						
							| 34 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 35 | 34 | nesymi |  |-  -. (/) = 1o | 
						
							| 36 | 35 | a1i |  |-  ( T. -> -. (/) = 1o ) | 
						
							| 37 | 31 33 36 | enpr2d |  |-  ( T. -> { (/) , 1o } ~~ 2o ) | 
						
							| 38 | 37 | mptru |  |-  { (/) , 1o } ~~ 2o | 
						
							| 39 | 26 38 | eqbrtri |  |-  2o ~~ 2o | 
						
							| 40 |  | breq1 |  |-  ( 2o = { y } -> ( 2o ~~ 2o <-> { y } ~~ 2o ) ) | 
						
							| 41 | 39 40 | mpbii |  |-  ( 2o = { y } -> { y } ~~ 2o ) | 
						
							| 42 | 30 41 | mto |  |-  -. 2o = { y } | 
						
							| 43 | 42 | nex |  |-  -. E. y 2o = { y } | 
						
							| 44 |  | 2on0 |  |-  2o =/= (/) | 
						
							| 45 |  | f1cdmsn |  |-  ( ( f : 2o -1-1-> { x } /\ 2o =/= (/) ) -> E. y 2o = { y } ) | 
						
							| 46 | 44 45 | mpan2 |  |-  ( f : 2o -1-1-> { x } -> E. y 2o = { y } ) | 
						
							| 47 | 43 46 | mto |  |-  -. f : 2o -1-1-> { x } | 
						
							| 48 | 47 | nex |  |-  -. E. f f : 2o -1-1-> { x } | 
						
							| 49 |  | brdomi |  |-  ( 2o ~<_ { x } -> E. f f : 2o -1-1-> { x } ) | 
						
							| 50 | 48 49 | mto |  |-  -. 2o ~<_ { x } | 
						
							| 51 |  | breq2 |  |-  ( A = { x } -> ( 2o ~<_ A <-> 2o ~<_ { x } ) ) | 
						
							| 52 | 50 51 | mtbiri |  |-  ( A = { x } -> -. 2o ~<_ A ) | 
						
							| 53 | 52 | con2i |  |-  ( 2o ~<_ A -> -. A = { x } ) | 
						
							| 54 | 53 | nexdv |  |-  ( 2o ~<_ A -> -. E. x A = { x } ) | 
						
							| 55 |  | reldom |  |-  Rel ~<_ | 
						
							| 56 | 55 | brrelex2i |  |-  ( 2o ~<_ A -> A e. _V ) | 
						
							| 57 |  | breng |  |-  ( ( 1o e. _V /\ A e. _V ) -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) | 
						
							| 58 | 32 57 | mpan |  |-  ( A e. _V -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) | 
						
							| 59 | 56 58 | syl |  |-  ( 2o ~<_ A -> ( 1o ~~ A <-> E. f f : 1o -1-1-onto-> A ) ) | 
						
							| 60 | 29 4 | sylibr |  |-  ( 2o ~<_ A -> (/) ~< A ) | 
						
							| 61 | 56 6 | syl |  |-  ( 2o ~<_ A -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 62 | 60 61 | mpbid |  |-  ( 2o ~<_ A -> A =/= (/) ) | 
						
							| 63 |  | f1ocnv |  |-  ( f : 1o -1-1-onto-> A -> `' f : A -1-1-onto-> 1o ) | 
						
							| 64 |  | f1of1 |  |-  ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> 1o ) | 
						
							| 65 |  | f1eq3 |  |-  ( 1o = { (/) } -> ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) ) | 
						
							| 66 | 12 65 | ax-mp |  |-  ( `' f : A -1-1-> 1o <-> `' f : A -1-1-> { (/) } ) | 
						
							| 67 | 64 66 | sylib |  |-  ( `' f : A -1-1-onto-> 1o -> `' f : A -1-1-> { (/) } ) | 
						
							| 68 | 63 67 | syl |  |-  ( f : 1o -1-1-onto-> A -> `' f : A -1-1-> { (/) } ) | 
						
							| 69 |  | f1cdmsn |  |-  ( ( `' f : A -1-1-> { (/) } /\ A =/= (/) ) -> E. x A = { x } ) | 
						
							| 70 | 68 69 | sylan |  |-  ( ( f : 1o -1-1-onto-> A /\ A =/= (/) ) -> E. x A = { x } ) | 
						
							| 71 | 70 | expcom |  |-  ( A =/= (/) -> ( f : 1o -1-1-onto-> A -> E. x A = { x } ) ) | 
						
							| 72 | 71 | exlimdv |  |-  ( A =/= (/) -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) ) | 
						
							| 73 | 62 72 | syl |  |-  ( 2o ~<_ A -> ( E. f f : 1o -1-1-onto-> A -> E. x A = { x } ) ) | 
						
							| 74 | 59 73 | sylbid |  |-  ( 2o ~<_ A -> ( 1o ~~ A -> E. x A = { x } ) ) | 
						
							| 75 | 54 74 | mtod |  |-  ( 2o ~<_ A -> -. 1o ~~ A ) | 
						
							| 76 |  | brsdom |  |-  ( 1o ~< A <-> ( 1o ~<_ A /\ -. 1o ~~ A ) ) | 
						
							| 77 | 29 75 76 | sylanbrc |  |-  ( 2o ~<_ A -> 1o ~< A ) | 
						
							| 78 | 24 77 | impbii |  |-  ( 1o ~< A <-> 2o ~<_ A ) |