Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
|- 1 e. CC |
2 |
|
2prm |
|- 2 e. Prime |
3 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
4 |
|
sgmppw |
|- ( ( 1 e. CC /\ 2 e. Prime /\ ( N - 1 ) e. NN0 ) -> ( 1 sigma ( 2 ^ ( N - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( 2 ^c 1 ) ^ k ) ) |
5 |
1 2 3 4
|
mp3an12i |
|- ( N e. NN -> ( 1 sigma ( 2 ^ ( N - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( 2 ^c 1 ) ^ k ) ) |
6 |
|
2cn |
|- 2 e. CC |
7 |
|
cxp1 |
|- ( 2 e. CC -> ( 2 ^c 1 ) = 2 ) |
8 |
6 7
|
mp1i |
|- ( k e. ( 0 ... ( N - 1 ) ) -> ( 2 ^c 1 ) = 2 ) |
9 |
8
|
oveq1d |
|- ( k e. ( 0 ... ( N - 1 ) ) -> ( ( 2 ^c 1 ) ^ k ) = ( 2 ^ k ) ) |
10 |
9
|
sumeq2i |
|- sum_ k e. ( 0 ... ( N - 1 ) ) ( ( 2 ^c 1 ) ^ k ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) |
11 |
6
|
a1i |
|- ( N e. NN -> 2 e. CC ) |
12 |
|
1ne2 |
|- 1 =/= 2 |
13 |
12
|
necomi |
|- 2 =/= 1 |
14 |
13
|
a1i |
|- ( N e. NN -> 2 =/= 1 ) |
15 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
16 |
11 14 15
|
geoser |
|- ( N e. NN -> sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
17 |
10 16
|
syl5eq |
|- ( N e. NN -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( 2 ^c 1 ) ^ k ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
18 |
|
2nn |
|- 2 e. NN |
19 |
|
nnexpcl |
|- ( ( 2 e. NN /\ N e. NN0 ) -> ( 2 ^ N ) e. NN ) |
20 |
18 15 19
|
sylancr |
|- ( N e. NN -> ( 2 ^ N ) e. NN ) |
21 |
20
|
nncnd |
|- ( N e. NN -> ( 2 ^ N ) e. CC ) |
22 |
|
subcl |
|- ( ( ( 2 ^ N ) e. CC /\ 1 e. CC ) -> ( ( 2 ^ N ) - 1 ) e. CC ) |
23 |
21 1 22
|
sylancl |
|- ( N e. NN -> ( ( 2 ^ N ) - 1 ) e. CC ) |
24 |
1
|
a1i |
|- ( N e. NN -> 1 e. CC ) |
25 |
|
ax-1ne0 |
|- 1 =/= 0 |
26 |
25
|
a1i |
|- ( N e. NN -> 1 =/= 0 ) |
27 |
23 24 26
|
div2negd |
|- ( N e. NN -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( ( 2 ^ N ) - 1 ) / 1 ) ) |
28 |
|
negsubdi2 |
|- ( ( ( 2 ^ N ) e. CC /\ 1 e. CC ) -> -u ( ( 2 ^ N ) - 1 ) = ( 1 - ( 2 ^ N ) ) ) |
29 |
21 1 28
|
sylancl |
|- ( N e. NN -> -u ( ( 2 ^ N ) - 1 ) = ( 1 - ( 2 ^ N ) ) ) |
30 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
31 |
|
0cn |
|- 0 e. CC |
32 |
|
pnpcan |
|- ( ( 1 e. CC /\ 0 e. CC /\ 1 e. CC ) -> ( ( 1 + 0 ) - ( 1 + 1 ) ) = ( 0 - 1 ) ) |
33 |
1 31 1 32
|
mp3an |
|- ( ( 1 + 0 ) - ( 1 + 1 ) ) = ( 0 - 1 ) |
34 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
35 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
36 |
34 35
|
oveq12i |
|- ( ( 1 + 0 ) - ( 1 + 1 ) ) = ( 1 - 2 ) |
37 |
30 33 36
|
3eqtr2i |
|- -u 1 = ( 1 - 2 ) |
38 |
37
|
a1i |
|- ( N e. NN -> -u 1 = ( 1 - 2 ) ) |
39 |
29 38
|
oveq12d |
|- ( N e. NN -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
40 |
23
|
div1d |
|- ( N e. NN -> ( ( ( 2 ^ N ) - 1 ) / 1 ) = ( ( 2 ^ N ) - 1 ) ) |
41 |
27 39 40
|
3eqtr3d |
|- ( N e. NN -> ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) = ( ( 2 ^ N ) - 1 ) ) |
42 |
5 17 41
|
3eqtrd |
|- ( N e. NN -> ( 1 sigma ( 2 ^ ( N - 1 ) ) ) = ( ( 2 ^ N ) - 1 ) ) |