Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sno | |- 1s e. No  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-1s |  |-  1s = ( { 0s } |s (/) ) | 
						|
| 2 | 0sno | |- 0s e. No  | 
						|
| 3 | snelpwi |  |-  ( 0s e. No -> { 0s } e. ~P No ) | 
						|
| 4 | 2 3 | ax-mp |  |-  { 0s } e. ~P No | 
						
| 5 | nulssgt |  |-  ( { 0s } e. ~P No -> { 0s } < | 
						|
| 6 | 4 5 | ax-mp |  |-  { 0s } < | 
						
| 7 | scutcl |  |-  ( { 0s } < | 
						|
| 8 | 6 7 | ax-mp |  |-  ( { 0s } |s (/) ) e. No | 
						
| 9 | 1 8 | eqeltri | |- 1s e. No  |