| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1stccnp.1 |  |-  ( ph -> J e. 1stc ) | 
						
							| 2 |  | 1stccnp.2 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | 1stccnp.3 |  |-  ( ph -> K e. ( TopOn ` Y ) ) | 
						
							| 4 |  | 1stccn.7 |  |-  ( ph -> F : X --> Y ) | 
						
							| 5 |  | cncnp |  |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) ) ) | 
						
							| 6 | 2 3 5 | syl2anc |  |-  ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> Y /\ A. x e. X F e. ( ( J CnP K ) ` x ) ) ) ) | 
						
							| 7 | 4 6 | mpbirand |  |-  ( ph -> ( F e. ( J Cn K ) <-> A. x e. X F e. ( ( J CnP K ) ` x ) ) ) | 
						
							| 8 | 4 | adantr |  |-  ( ( ph /\ x e. X ) -> F : X --> Y ) | 
						
							| 9 | 1 | adantr |  |-  ( ( ph /\ x e. X ) -> J e. 1stc ) | 
						
							| 10 | 2 | adantr |  |-  ( ( ph /\ x e. X ) -> J e. ( TopOn ` X ) ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ x e. X ) -> K e. ( TopOn ` Y ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ x e. X ) -> x e. X ) | 
						
							| 13 | 9 10 11 12 | 1stccnp |  |-  ( ( ph /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) | 
						
							| 14 | 8 13 | mpbirand |  |-  ( ( ph /\ x e. X ) -> ( F e. ( ( J CnP K ) ` x ) <-> A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 15 | 14 | ralbidva |  |-  ( ph -> ( A. x e. X F e. ( ( J CnP K ) ` x ) <-> A. x e. X A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 16 |  | ralcom4 |  |-  ( A. x e. X A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. f A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) | 
						
							| 17 |  | impexp |  |-  ( ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( f : NN --> X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 18 | 17 | ralbii |  |-  ( A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. x e. X ( f : NN --> X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 19 |  | r19.21v |  |-  ( A. x e. X ( f : NN --> X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> ( f : NN --> X -> A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 20 | 18 19 | bitri |  |-  ( A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( f : NN --> X -> A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 21 |  | df-ral |  |-  ( A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. x ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 22 |  | lmcl |  |-  ( ( J e. ( TopOn ` X ) /\ f ( ~~>t ` J ) x ) -> x e. X ) | 
						
							| 23 | 2 22 | sylan |  |-  ( ( ph /\ f ( ~~>t ` J ) x ) -> x e. X ) | 
						
							| 24 | 23 | ex |  |-  ( ph -> ( f ( ~~>t ` J ) x -> x e. X ) ) | 
						
							| 25 | 24 | pm4.71rd |  |-  ( ph -> ( f ( ~~>t ` J ) x <-> ( x e. X /\ f ( ~~>t ` J ) x ) ) ) | 
						
							| 26 | 25 | imbi1d |  |-  ( ph -> ( ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( ( x e. X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 27 |  | impexp |  |-  ( ( ( x e. X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 28 | 26 27 | bitr2di |  |-  ( ph -> ( ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 29 | 28 | albidv |  |-  ( ph -> ( A. x ( x e. X -> ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 30 | 21 29 | bitrid |  |-  ( ph -> ( A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) | 
						
							| 31 | 30 | imbi2d |  |-  ( ph -> ( ( f : NN --> X -> A. x e. X ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) <-> ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) | 
						
							| 32 | 20 31 | bitrid |  |-  ( ph -> ( A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) | 
						
							| 33 | 32 | albidv |  |-  ( ph -> ( A. f A. x e. X ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) | 
						
							| 34 | 16 33 | bitrid |  |-  ( ph -> ( A. x e. X A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) x ) -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) | 
						
							| 35 | 7 15 34 | 3bitrd |  |-  ( ph -> ( F e. ( J Cn K ) <-> A. f ( f : NN --> X -> A. x ( f ( ~~>t ` J ) x -> ( F o. f ) ( ~~>t ` K ) ( F ` x ) ) ) ) ) |