| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1stccnp.1 |  |-  ( ph -> J e. 1stc ) | 
						
							| 2 |  | 1stccnp.2 |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 3 |  | 1stccnp.3 |  |-  ( ph -> K e. ( TopOn ` Y ) ) | 
						
							| 4 |  | 1stccnp.4 |  |-  ( ph -> P e. X ) | 
						
							| 5 | 2 3 | jca |  |-  ( ph -> ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) ) | 
						
							| 6 |  | cnpf2 |  |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) | 
						
							| 7 | 6 | 3expa |  |-  ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) | 
						
							| 8 | 5 7 | sylan |  |-  ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> F : X --> Y ) | 
						
							| 9 |  | simprr |  |-  ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) | 
						
							| 10 |  | simplr |  |-  ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> F e. ( ( J CnP K ) ` P ) ) | 
						
							| 11 | 9 10 | lmcnp |  |-  ( ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) /\ ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) | 
						
							| 12 | 11 | ex |  |-  ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) | 
						
							| 13 | 12 | alrimiv |  |-  ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) | 
						
							| 14 | 8 13 | jca |  |-  ( ( ph /\ F e. ( ( J CnP K ) ` P ) ) -> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) | 
						
							| 15 |  | simprl |  |-  ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> F : X --> Y ) | 
						
							| 16 |  | fal |  |-  -. F. | 
						
							| 17 |  | 19.29 |  |-  ( ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> E. f ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) | 
						
							| 18 |  | simprl |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f : NN --> ( X \ ( `' F " u ) ) ) | 
						
							| 19 |  | difss |  |-  ( X \ ( `' F " u ) ) C_ X | 
						
							| 20 |  | fss |  |-  ( ( f : NN --> ( X \ ( `' F " u ) ) /\ ( X \ ( `' F " u ) ) C_ X ) -> f : NN --> X ) | 
						
							| 21 | 18 19 20 | sylancl |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f : NN --> X ) | 
						
							| 22 |  | simprr |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) | 
						
							| 23 | 21 22 | jca |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( f : NN --> X /\ f ( ~~>t ` J ) P ) ) | 
						
							| 24 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 25 |  | simplrr |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( F ` P ) e. u ) | 
						
							| 26 |  | 1zzd |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> 1 e. ZZ ) | 
						
							| 27 |  | simprr |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) | 
						
							| 28 |  | simplrl |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> u e. K ) | 
						
							| 29 | 24 25 26 27 28 | lmcvg |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u ) | 
						
							| 30 | 24 | r19.2uz |  |-  ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u -> E. k e. NN ( ( F o. f ) ` k ) e. u ) | 
						
							| 31 |  | simprll |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> f : NN --> ( X \ ( `' F " u ) ) ) | 
						
							| 32 | 31 | ffnd |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> f Fn NN ) | 
						
							| 33 |  | fvco2 |  |-  ( ( f Fn NN /\ k e. NN ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) | 
						
							| 34 | 32 33 | sylan |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( F o. f ) ` k ) = ( F ` ( f ` k ) ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( F o. f ) ` k ) e. u <-> ( F ` ( f ` k ) ) e. u ) ) | 
						
							| 36 | 31 | ffvelcdmda |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( f ` k ) e. ( X \ ( `' F " u ) ) ) | 
						
							| 37 | 36 | eldifad |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( f ` k ) e. X ) | 
						
							| 38 |  | simplr |  |-  ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> F : X --> Y ) | 
						
							| 39 | 38 | ad2antrr |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> F : X --> Y ) | 
						
							| 40 |  | ffn |  |-  ( F : X --> Y -> F Fn X ) | 
						
							| 41 |  | elpreima |  |-  ( F Fn X -> ( ( f ` k ) e. ( `' F " u ) <-> ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) ) ) | 
						
							| 42 | 39 40 41 | 3syl |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( f ` k ) e. ( `' F " u ) <-> ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) ) ) | 
						
							| 43 | 36 | eldifbd |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> -. ( f ` k ) e. ( `' F " u ) ) | 
						
							| 44 | 43 | pm2.21d |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( f ` k ) e. ( `' F " u ) -> F. ) ) | 
						
							| 45 | 42 44 | sylbird |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( f ` k ) e. X /\ ( F ` ( f ` k ) ) e. u ) -> F. ) ) | 
						
							| 46 | 37 45 | mpand |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( F ` ( f ` k ) ) e. u -> F. ) ) | 
						
							| 47 | 35 46 | sylbid |  |-  ( ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) /\ k e. NN ) -> ( ( ( F o. f ) ` k ) e. u -> F. ) ) | 
						
							| 48 | 47 | rexlimdva |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( E. k e. NN ( ( F o. f ) ` k ) e. u -> F. ) ) | 
						
							| 49 | 30 48 | syl5 |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> ( E. j e. NN A. k e. ( ZZ>= ` j ) ( ( F o. f ) ` k ) e. u -> F. ) ) | 
						
							| 50 | 29 49 | mpd |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) /\ ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) -> F. ) | 
						
							| 51 | 50 | expr |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( ( F o. f ) ( ~~>t ` K ) ( F ` P ) -> F. ) ) | 
						
							| 52 | 23 51 | embantd |  |-  ( ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> F. ) ) | 
						
							| 53 | 52 | ex |  |-  ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> F. ) ) ) | 
						
							| 54 | 53 | impcomd |  |-  ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) | 
						
							| 55 | 54 | exlimdv |  |-  ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. f ( ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) | 
						
							| 56 | 17 55 | syl5 |  |-  ( ( ( ph /\ F : X --> Y ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) /\ E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) -> F. ) ) | 
						
							| 57 | 56 | exp4b |  |-  ( ( ph /\ F : X --> Y ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) ) | 
						
							| 58 | 57 | com23 |  |-  ( ( ph /\ F : X --> Y ) -> ( A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) ) | 
						
							| 59 | 58 | impr |  |-  ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> ( ( u e. K /\ ( F ` P ) e. u ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) ) | 
						
							| 60 | 59 | imp |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) -> F. ) ) | 
						
							| 61 | 16 60 | mtoi |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) | 
						
							| 62 | 1 | ad2antrr |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. 1stc ) | 
						
							| 63 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 64 |  | toponuni |  |-  ( J e. ( TopOn ` X ) -> X = U. J ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> X = U. J ) | 
						
							| 66 | 19 65 | sseqtrid |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( X \ ( `' F " u ) ) C_ U. J ) | 
						
							| 67 |  | eqid |  |-  U. J = U. J | 
						
							| 68 | 67 | 1stcelcls |  |-  ( ( J e. 1stc /\ ( X \ ( `' F " u ) ) C_ U. J ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) | 
						
							| 69 | 62 66 68 | syl2anc |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> E. f ( f : NN --> ( X \ ( `' F " u ) ) /\ f ( ~~>t ` J ) P ) ) ) | 
						
							| 70 | 61 69 | mtbird |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) ) | 
						
							| 71 |  | topontop |  |-  ( J e. ( TopOn ` X ) -> J e. Top ) | 
						
							| 72 | 63 71 | syl |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> J e. Top ) | 
						
							| 73 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> P e. X ) | 
						
							| 74 | 73 65 | eleqtrd |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> P e. U. J ) | 
						
							| 75 | 67 | elcls |  |-  ( ( J e. Top /\ ( X \ ( `' F " u ) ) C_ U. J /\ P e. U. J ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) | 
						
							| 76 | 72 66 74 75 | syl3anc |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( P e. ( ( cls ` J ) ` ( X \ ( `' F " u ) ) ) <-> A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) | 
						
							| 77 | 70 76 | mtbid |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) | 
						
							| 78 | 15 | ad2antrr |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> F : X --> Y ) | 
						
							| 79 | 78 | ffund |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> Fun F ) | 
						
							| 80 |  | toponss |  |-  ( ( J e. ( TopOn ` X ) /\ v e. J ) -> v C_ X ) | 
						
							| 81 | 63 80 | sylan |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> v C_ X ) | 
						
							| 82 | 78 | fdmd |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> dom F = X ) | 
						
							| 83 | 81 82 | sseqtrrd |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> v C_ dom F ) | 
						
							| 84 |  | funimass3 |  |-  ( ( Fun F /\ v C_ dom F ) -> ( ( F " v ) C_ u <-> v C_ ( `' F " u ) ) ) | 
						
							| 85 | 79 83 84 | syl2anc |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> v C_ ( `' F " u ) ) ) | 
						
							| 86 |  | dfss2 |  |-  ( v C_ X <-> ( v i^i X ) = v ) | 
						
							| 87 | 81 86 | sylib |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( v i^i X ) = v ) | 
						
							| 88 | 87 | sseq1d |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( v i^i X ) C_ ( `' F " u ) <-> v C_ ( `' F " u ) ) ) | 
						
							| 89 | 85 88 | bitr4d |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> ( v i^i X ) C_ ( `' F " u ) ) ) | 
						
							| 90 |  | nne |  |-  ( -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) <-> ( v i^i ( X \ ( `' F " u ) ) ) = (/) ) | 
						
							| 91 |  | inssdif0 |  |-  ( ( v i^i X ) C_ ( `' F " u ) <-> ( v i^i ( X \ ( `' F " u ) ) ) = (/) ) | 
						
							| 92 | 90 91 | bitr4i |  |-  ( -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) <-> ( v i^i X ) C_ ( `' F " u ) ) | 
						
							| 93 | 89 92 | bitr4di |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( F " v ) C_ u <-> -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) | 
						
							| 94 | 93 | anbi2d |  |-  ( ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) /\ v e. J ) -> ( ( P e. v /\ ( F " v ) C_ u ) <-> ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) | 
						
							| 95 | 94 | rexbidva |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. v e. J ( P e. v /\ ( F " v ) C_ u ) <-> E. v e. J ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) | 
						
							| 96 |  | rexanali |  |-  ( E. v e. J ( P e. v /\ -. ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) <-> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) | 
						
							| 97 | 95 96 | bitrdi |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> ( E. v e. J ( P e. v /\ ( F " v ) C_ u ) <-> -. A. v e. J ( P e. v -> ( v i^i ( X \ ( `' F " u ) ) ) =/= (/) ) ) ) | 
						
							| 98 | 77 97 | mpbird |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ ( u e. K /\ ( F ` P ) e. u ) ) -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) | 
						
							| 99 | 98 | expr |  |-  ( ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) /\ u e. K ) -> ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) | 
						
							| 100 | 99 | ralrimiva |  |-  ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) | 
						
							| 101 |  | iscnp |  |-  ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ P e. X ) -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) | 
						
							| 102 | 2 3 4 101 | syl3anc |  |-  ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. u e. K ( ( F ` P ) e. u -> E. v e. J ( P e. v /\ ( F " v ) C_ u ) ) ) ) ) | 
						
							| 104 | 15 100 103 | mpbir2and |  |-  ( ( ph /\ ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) -> F e. ( ( J CnP K ) ` P ) ) | 
						
							| 105 | 14 104 | impbida |  |-  ( ph -> ( F e. ( ( J CnP K ) ` P ) <-> ( F : X --> Y /\ A. f ( ( f : NN --> X /\ f ( ~~>t ` J ) P ) -> ( F o. f ) ( ~~>t ` K ) ( F ` P ) ) ) ) ) |