Step |
Hyp |
Ref |
Expression |
1 |
|
1stcelcls.1 |
|- X = U. J |
2 |
|
simpll |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> J e. 1stc ) |
3 |
|
1stctop |
|- ( J e. 1stc -> J e. Top ) |
4 |
1
|
clsss3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
5 |
3 4
|
sylan |
|- ( ( J e. 1stc /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
6 |
5
|
sselda |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> P e. X ) |
7 |
1
|
1stcfb |
|- ( ( J e. 1stc /\ P e. X ) -> E. g ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) |
8 |
2 6 7
|
syl2anc |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> E. g ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) |
9 |
|
simpr2 |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) ) |
10 |
|
simpl |
|- ( ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> P e. ( g ` k ) ) |
11 |
10
|
ralimi |
|- ( A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> A. k e. NN P e. ( g ` k ) ) |
12 |
9 11
|
syl |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. k e. NN P e. ( g ` k ) ) |
13 |
|
fveq2 |
|- ( k = n -> ( g ` k ) = ( g ` n ) ) |
14 |
13
|
eleq2d |
|- ( k = n -> ( P e. ( g ` k ) <-> P e. ( g ` n ) ) ) |
15 |
14
|
rspccva |
|- ( ( A. k e. NN P e. ( g ` k ) /\ n e. NN ) -> P e. ( g ` n ) ) |
16 |
12 15
|
sylan |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> P e. ( g ` n ) ) |
17 |
|
eleq2 |
|- ( y = ( g ` n ) -> ( P e. y <-> P e. ( g ` n ) ) ) |
18 |
|
ineq1 |
|- ( y = ( g ` n ) -> ( y i^i S ) = ( ( g ` n ) i^i S ) ) |
19 |
18
|
neeq1d |
|- ( y = ( g ` n ) -> ( ( y i^i S ) =/= (/) <-> ( ( g ` n ) i^i S ) =/= (/) ) ) |
20 |
17 19
|
imbi12d |
|- ( y = ( g ` n ) -> ( ( P e. y -> ( y i^i S ) =/= (/) ) <-> ( P e. ( g ` n ) -> ( ( g ` n ) i^i S ) =/= (/) ) ) ) |
21 |
1
|
elcls2 |
|- ( ( J e. Top /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) ) ) |
22 |
3 21
|
sylan |
|- ( ( J e. 1stc /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> ( P e. X /\ A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) ) ) |
23 |
22
|
simplbda |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) |
24 |
23
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> A. y e. J ( P e. y -> ( y i^i S ) =/= (/) ) ) |
25 |
|
simpr1 |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> g : NN --> J ) |
26 |
25
|
ffvelrnda |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( g ` n ) e. J ) |
27 |
20 24 26
|
rspcdva |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( P e. ( g ` n ) -> ( ( g ` n ) i^i S ) =/= (/) ) ) |
28 |
16 27
|
mpd |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( ( g ` n ) i^i S ) =/= (/) ) |
29 |
|
elin |
|- ( x e. ( ( g ` n ) i^i S ) <-> ( x e. ( g ` n ) /\ x e. S ) ) |
30 |
29
|
biancomi |
|- ( x e. ( ( g ` n ) i^i S ) <-> ( x e. S /\ x e. ( g ` n ) ) ) |
31 |
30
|
exbii |
|- ( E. x x e. ( ( g ` n ) i^i S ) <-> E. x ( x e. S /\ x e. ( g ` n ) ) ) |
32 |
|
n0 |
|- ( ( ( g ` n ) i^i S ) =/= (/) <-> E. x x e. ( ( g ` n ) i^i S ) ) |
33 |
|
df-rex |
|- ( E. x e. S x e. ( g ` n ) <-> E. x ( x e. S /\ x e. ( g ` n ) ) ) |
34 |
31 32 33
|
3bitr4i |
|- ( ( ( g ` n ) i^i S ) =/= (/) <-> E. x e. S x e. ( g ` n ) ) |
35 |
28 34
|
sylib |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> E. x e. S x e. ( g ` n ) ) |
36 |
3
|
ad2antrr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> J e. Top ) |
37 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
38 |
36 37
|
syl |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> X e. J ) |
39 |
|
simplr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> S C_ X ) |
40 |
38 39
|
ssexd |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> S e. _V ) |
41 |
|
fvi |
|- ( S e. _V -> ( _I ` S ) = S ) |
42 |
40 41
|
syl |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> ( _I ` S ) = S ) |
43 |
42
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( _I ` S ) = S ) |
44 |
43
|
rexeqdv |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> ( E. x e. ( _I ` S ) x e. ( g ` n ) <-> E. x e. S x e. ( g ` n ) ) ) |
45 |
35 44
|
mpbird |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ n e. NN ) -> E. x e. ( _I ` S ) x e. ( g ` n ) ) |
46 |
45
|
ralrimiva |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. n e. NN E. x e. ( _I ` S ) x e. ( g ` n ) ) |
47 |
|
fvex |
|- ( _I ` S ) e. _V |
48 |
|
nnenom |
|- NN ~~ _om |
49 |
|
eleq1 |
|- ( x = ( f ` n ) -> ( x e. ( g ` n ) <-> ( f ` n ) e. ( g ` n ) ) ) |
50 |
47 48 49
|
axcc4 |
|- ( A. n e. NN E. x e. ( _I ` S ) x e. ( g ` n ) -> E. f ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) |
51 |
46 50
|
syl |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> E. f ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) |
52 |
42
|
feq3d |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> ( f : NN --> ( _I ` S ) <-> f : NN --> S ) ) |
53 |
52
|
biimpd |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> ( f : NN --> ( _I ` S ) -> f : NN --> S ) ) |
54 |
53
|
adantr |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( f : NN --> ( _I ` S ) -> f : NN --> S ) ) |
55 |
6
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> P e. X ) |
56 |
|
simplr3 |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) |
57 |
|
eleq2 |
|- ( x = y -> ( P e. x <-> P e. y ) ) |
58 |
|
fveq2 |
|- ( k = j -> ( g ` k ) = ( g ` j ) ) |
59 |
58
|
sseq1d |
|- ( k = j -> ( ( g ` k ) C_ x <-> ( g ` j ) C_ x ) ) |
60 |
59
|
cbvrexvw |
|- ( E. k e. NN ( g ` k ) C_ x <-> E. j e. NN ( g ` j ) C_ x ) |
61 |
|
sseq2 |
|- ( x = y -> ( ( g ` j ) C_ x <-> ( g ` j ) C_ y ) ) |
62 |
61
|
rexbidv |
|- ( x = y -> ( E. j e. NN ( g ` j ) C_ x <-> E. j e. NN ( g ` j ) C_ y ) ) |
63 |
60 62
|
syl5bb |
|- ( x = y -> ( E. k e. NN ( g ` k ) C_ x <-> E. j e. NN ( g ` j ) C_ y ) ) |
64 |
57 63
|
imbi12d |
|- ( x = y -> ( ( P e. x -> E. k e. NN ( g ` k ) C_ x ) <-> ( P e. y -> E. j e. NN ( g ` j ) C_ y ) ) ) |
65 |
64
|
rspccva |
|- ( ( A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) /\ y e. J ) -> ( P e. y -> E. j e. NN ( g ` j ) C_ y ) ) |
66 |
56 65
|
sylan |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) -> ( P e. y -> E. j e. NN ( g ` j ) C_ y ) ) |
67 |
|
simpr |
|- ( ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
68 |
67
|
ralimi |
|- ( A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) -> A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
69 |
9 68
|
syl |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
70 |
69
|
adantr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) ) |
71 |
|
simprrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> j e. NN ) |
72 |
|
fveq2 |
|- ( n = j -> ( g ` n ) = ( g ` j ) ) |
73 |
72
|
sseq1d |
|- ( n = j -> ( ( g ` n ) C_ ( g ` j ) <-> ( g ` j ) C_ ( g ` j ) ) ) |
74 |
73
|
imbi2d |
|- ( n = j -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` n ) C_ ( g ` j ) ) <-> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` j ) C_ ( g ` j ) ) ) ) |
75 |
|
fveq2 |
|- ( n = m -> ( g ` n ) = ( g ` m ) ) |
76 |
75
|
sseq1d |
|- ( n = m -> ( ( g ` n ) C_ ( g ` j ) <-> ( g ` m ) C_ ( g ` j ) ) ) |
77 |
76
|
imbi2d |
|- ( n = m -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` n ) C_ ( g ` j ) ) <-> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` m ) C_ ( g ` j ) ) ) ) |
78 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( g ` n ) = ( g ` ( m + 1 ) ) ) |
79 |
78
|
sseq1d |
|- ( n = ( m + 1 ) -> ( ( g ` n ) C_ ( g ` j ) <-> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) |
80 |
79
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` n ) C_ ( g ` j ) ) <-> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) ) |
81 |
|
ssid |
|- ( g ` j ) C_ ( g ` j ) |
82 |
81
|
2a1i |
|- ( j e. ZZ -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` j ) C_ ( g ` j ) ) ) |
83 |
|
eluznn |
|- ( ( j e. NN /\ m e. ( ZZ>= ` j ) ) -> m e. NN ) |
84 |
|
fvoveq1 |
|- ( k = m -> ( g ` ( k + 1 ) ) = ( g ` ( m + 1 ) ) ) |
85 |
|
fveq2 |
|- ( k = m -> ( g ` k ) = ( g ` m ) ) |
86 |
84 85
|
sseq12d |
|- ( k = m -> ( ( g ` ( k + 1 ) ) C_ ( g ` k ) <-> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) ) |
87 |
86
|
rspccva |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ m e. NN ) -> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) |
88 |
83 87
|
sylan2 |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ ( j e. NN /\ m e. ( ZZ>= ` j ) ) ) -> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) |
89 |
88
|
anassrs |
|- ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) /\ m e. ( ZZ>= ` j ) ) -> ( g ` ( m + 1 ) ) C_ ( g ` m ) ) |
90 |
|
sstr2 |
|- ( ( g ` ( m + 1 ) ) C_ ( g ` m ) -> ( ( g ` m ) C_ ( g ` j ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) |
91 |
89 90
|
syl |
|- ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) /\ m e. ( ZZ>= ` j ) ) -> ( ( g ` m ) C_ ( g ` j ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) |
92 |
91
|
expcom |
|- ( m e. ( ZZ>= ` j ) -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( ( g ` m ) C_ ( g ` j ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) ) |
93 |
92
|
a2d |
|- ( m e. ( ZZ>= ` j ) -> ( ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` m ) C_ ( g ` j ) ) -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` ( m + 1 ) ) C_ ( g ` j ) ) ) ) |
94 |
74 77 80 77 82 93
|
uzind4 |
|- ( m e. ( ZZ>= ` j ) -> ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( g ` m ) C_ ( g ` j ) ) ) |
95 |
94
|
com12 |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> ( m e. ( ZZ>= ` j ) -> ( g ` m ) C_ ( g ` j ) ) ) |
96 |
95
|
ralrimiv |
|- ( ( A. k e. NN ( g ` ( k + 1 ) ) C_ ( g ` k ) /\ j e. NN ) -> A. m e. ( ZZ>= ` j ) ( g ` m ) C_ ( g ` j ) ) |
97 |
70 71 96
|
syl2anc |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( g ` m ) C_ ( g ` j ) ) |
98 |
|
fveq2 |
|- ( n = m -> ( f ` n ) = ( f ` m ) ) |
99 |
98 75
|
eleq12d |
|- ( n = m -> ( ( f ` n ) e. ( g ` n ) <-> ( f ` m ) e. ( g ` m ) ) ) |
100 |
|
simplr |
|- ( ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) -> A. n e. NN ( f ` n ) e. ( g ` n ) ) |
101 |
100
|
ad2antlr |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) /\ m e. ( ZZ>= ` j ) ) -> A. n e. NN ( f ` n ) e. ( g ` n ) ) |
102 |
71 83
|
sylan |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) /\ m e. ( ZZ>= ` j ) ) -> m e. NN ) |
103 |
99 101 102
|
rspcdva |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) /\ m e. ( ZZ>= ` j ) ) -> ( f ` m ) e. ( g ` m ) ) |
104 |
103
|
ralrimiva |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` m ) ) |
105 |
|
r19.26 |
|- ( A. m e. ( ZZ>= ` j ) ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) <-> ( A. m e. ( ZZ>= ` j ) ( g ` m ) C_ ( g ` j ) /\ A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` m ) ) ) |
106 |
97 104 105
|
sylanbrc |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) ) |
107 |
|
ssel2 |
|- ( ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) -> ( f ` m ) e. ( g ` j ) ) |
108 |
107
|
ralimi |
|- ( A. m e. ( ZZ>= ` j ) ( ( g ` m ) C_ ( g ` j ) /\ ( f ` m ) e. ( g ` m ) ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` j ) ) |
109 |
106 108
|
syl |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` j ) ) |
110 |
|
ssel |
|- ( ( g ` j ) C_ y -> ( ( f ` m ) e. ( g ` j ) -> ( f ` m ) e. y ) ) |
111 |
110
|
ralimdv |
|- ( ( g ` j ) C_ y -> ( A. m e. ( ZZ>= ` j ) ( f ` m ) e. ( g ` j ) -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
112 |
109 111
|
syl5com |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) /\ ( y e. J /\ j e. NN ) ) ) -> ( ( g ` j ) C_ y -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
113 |
112
|
anassrs |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ ( y e. J /\ j e. NN ) ) -> ( ( g ` j ) C_ y -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
114 |
113
|
anassrs |
|- ( ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) /\ j e. NN ) -> ( ( g ` j ) C_ y -> A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
115 |
114
|
reximdva |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) -> ( E. j e. NN ( g ` j ) C_ y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
116 |
66 115
|
syld |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ y e. J ) -> ( P e. y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
117 |
116
|
ralrimiva |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> A. y e. J ( P e. y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) |
118 |
36
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> J e. Top ) |
119 |
1
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
120 |
118 119
|
sylib |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> J e. ( TopOn ` X ) ) |
121 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
122 |
|
1zzd |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> 1 e. ZZ ) |
123 |
|
simprl |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> f : NN --> S ) |
124 |
39
|
ad2antrr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> S C_ X ) |
125 |
123 124
|
fssd |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> f : NN --> X ) |
126 |
|
eqidd |
|- ( ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) /\ m e. NN ) -> ( f ` m ) = ( f ` m ) ) |
127 |
120 121 122 125 126
|
lmbrf |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> ( f ( ~~>t ` J ) P <-> ( P e. X /\ A. y e. J ( P e. y -> E. j e. NN A. m e. ( ZZ>= ` j ) ( f ` m ) e. y ) ) ) ) |
128 |
55 117 127
|
mpbir2and |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) ) -> f ( ~~>t ` J ) P ) |
129 |
128
|
expr |
|- ( ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) /\ f : NN --> S ) -> ( A. n e. NN ( f ` n ) e. ( g ` n ) -> f ( ~~>t ` J ) P ) ) |
130 |
129
|
imdistanda |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( ( f : NN --> S /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) -> ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
131 |
54 130
|
syland |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) -> ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
132 |
131
|
eximdv |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> ( E. f ( f : NN --> ( _I ` S ) /\ A. n e. NN ( f ` n ) e. ( g ` n ) ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
133 |
51 132
|
mpd |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) /\ ( g : NN --> J /\ A. k e. NN ( P e. ( g ` k ) /\ ( g ` ( k + 1 ) ) C_ ( g ` k ) ) /\ A. x e. J ( P e. x -> E. k e. NN ( g ` k ) C_ x ) ) ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) |
134 |
8 133
|
exlimddv |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ P e. ( ( cls ` J ) ` S ) ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) |
135 |
134
|
ex |
|- ( ( J e. 1stc /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) -> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |
136 |
3
|
ad2antrr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> J e. Top ) |
137 |
136 119
|
sylib |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> J e. ( TopOn ` X ) ) |
138 |
|
1zzd |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> 1 e. ZZ ) |
139 |
|
simprr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> f ( ~~>t ` J ) P ) |
140 |
|
simprl |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> f : NN --> S ) |
141 |
140
|
ffvelrnda |
|- ( ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) /\ k e. NN ) -> ( f ` k ) e. S ) |
142 |
|
simplr |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> S C_ X ) |
143 |
121 137 138 139 141 142
|
lmcls |
|- ( ( ( J e. 1stc /\ S C_ X ) /\ ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) -> P e. ( ( cls ` J ) ` S ) ) |
144 |
143
|
ex |
|- ( ( J e. 1stc /\ S C_ X ) -> ( ( f : NN --> S /\ f ( ~~>t ` J ) P ) -> P e. ( ( cls ` J ) ` S ) ) ) |
145 |
144
|
exlimdv |
|- ( ( J e. 1stc /\ S C_ X ) -> ( E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) -> P e. ( ( cls ` J ) ` S ) ) ) |
146 |
135 145
|
impbid |
|- ( ( J e. 1stc /\ S C_ X ) -> ( P e. ( ( cls ` J ) ` S ) <-> E. f ( f : NN --> S /\ f ( ~~>t ` J ) P ) ) ) |