Metamath Proof Explorer


Theorem 1stcrestlem

Description: Lemma for 1stcrest . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion 1stcrestlem
|- ( B ~<_ _om -> ran ( x e. B |-> C ) ~<_ _om )

Proof

Step Hyp Ref Expression
1 ordom
 |-  Ord _om
2 reldom
 |-  Rel ~<_
3 2 brrelex2i
 |-  ( B ~<_ _om -> _om e. _V )
4 elong
 |-  ( _om e. _V -> ( _om e. On <-> Ord _om ) )
5 3 4 syl
 |-  ( B ~<_ _om -> ( _om e. On <-> Ord _om ) )
6 1 5 mpbiri
 |-  ( B ~<_ _om -> _om e. On )
7 ondomen
 |-  ( ( _om e. On /\ B ~<_ _om ) -> B e. dom card )
8 6 7 mpancom
 |-  ( B ~<_ _om -> B e. dom card )
9 eqid
 |-  ( x e. B |-> C ) = ( x e. B |-> C )
10 9 dmmptss
 |-  dom ( x e. B |-> C ) C_ B
11 ssnum
 |-  ( ( B e. dom card /\ dom ( x e. B |-> C ) C_ B ) -> dom ( x e. B |-> C ) e. dom card )
12 8 10 11 sylancl
 |-  ( B ~<_ _om -> dom ( x e. B |-> C ) e. dom card )
13 funmpt
 |-  Fun ( x e. B |-> C )
14 funforn
 |-  ( Fun ( x e. B |-> C ) <-> ( x e. B |-> C ) : dom ( x e. B |-> C ) -onto-> ran ( x e. B |-> C ) )
15 13 14 mpbi
 |-  ( x e. B |-> C ) : dom ( x e. B |-> C ) -onto-> ran ( x e. B |-> C )
16 fodomnum
 |-  ( dom ( x e. B |-> C ) e. dom card -> ( ( x e. B |-> C ) : dom ( x e. B |-> C ) -onto-> ran ( x e. B |-> C ) -> ran ( x e. B |-> C ) ~<_ dom ( x e. B |-> C ) ) )
17 12 15 16 mpisyl
 |-  ( B ~<_ _om -> ran ( x e. B |-> C ) ~<_ dom ( x e. B |-> C ) )
18 ctex
 |-  ( B ~<_ _om -> B e. _V )
19 ssdomg
 |-  ( B e. _V -> ( dom ( x e. B |-> C ) C_ B -> dom ( x e. B |-> C ) ~<_ B ) )
20 18 10 19 mpisyl
 |-  ( B ~<_ _om -> dom ( x e. B |-> C ) ~<_ B )
21 domtr
 |-  ( ( dom ( x e. B |-> C ) ~<_ B /\ B ~<_ _om ) -> dom ( x e. B |-> C ) ~<_ _om )
22 20 21 mpancom
 |-  ( B ~<_ _om -> dom ( x e. B |-> C ) ~<_ _om )
23 domtr
 |-  ( ( ran ( x e. B |-> C ) ~<_ dom ( x e. B |-> C ) /\ dom ( x e. B |-> C ) ~<_ _om ) -> ran ( x e. B |-> C ) ~<_ _om )
24 17 22 23 syl2anc
 |-  ( B ~<_ _om -> ran ( x e. B |-> C ) ~<_ _om )