Step |
Hyp |
Ref |
Expression |
1 |
|
ordom |
|- Ord _om |
2 |
|
reldom |
|- Rel ~<_ |
3 |
2
|
brrelex2i |
|- ( B ~<_ _om -> _om e. _V ) |
4 |
|
elong |
|- ( _om e. _V -> ( _om e. On <-> Ord _om ) ) |
5 |
3 4
|
syl |
|- ( B ~<_ _om -> ( _om e. On <-> Ord _om ) ) |
6 |
1 5
|
mpbiri |
|- ( B ~<_ _om -> _om e. On ) |
7 |
|
ondomen |
|- ( ( _om e. On /\ B ~<_ _om ) -> B e. dom card ) |
8 |
6 7
|
mpancom |
|- ( B ~<_ _om -> B e. dom card ) |
9 |
|
eqid |
|- ( x e. B |-> C ) = ( x e. B |-> C ) |
10 |
9
|
dmmptss |
|- dom ( x e. B |-> C ) C_ B |
11 |
|
ssnum |
|- ( ( B e. dom card /\ dom ( x e. B |-> C ) C_ B ) -> dom ( x e. B |-> C ) e. dom card ) |
12 |
8 10 11
|
sylancl |
|- ( B ~<_ _om -> dom ( x e. B |-> C ) e. dom card ) |
13 |
|
funmpt |
|- Fun ( x e. B |-> C ) |
14 |
|
funforn |
|- ( Fun ( x e. B |-> C ) <-> ( x e. B |-> C ) : dom ( x e. B |-> C ) -onto-> ran ( x e. B |-> C ) ) |
15 |
13 14
|
mpbi |
|- ( x e. B |-> C ) : dom ( x e. B |-> C ) -onto-> ran ( x e. B |-> C ) |
16 |
|
fodomnum |
|- ( dom ( x e. B |-> C ) e. dom card -> ( ( x e. B |-> C ) : dom ( x e. B |-> C ) -onto-> ran ( x e. B |-> C ) -> ran ( x e. B |-> C ) ~<_ dom ( x e. B |-> C ) ) ) |
17 |
12 15 16
|
mpisyl |
|- ( B ~<_ _om -> ran ( x e. B |-> C ) ~<_ dom ( x e. B |-> C ) ) |
18 |
|
ctex |
|- ( B ~<_ _om -> B e. _V ) |
19 |
|
ssdomg |
|- ( B e. _V -> ( dom ( x e. B |-> C ) C_ B -> dom ( x e. B |-> C ) ~<_ B ) ) |
20 |
18 10 19
|
mpisyl |
|- ( B ~<_ _om -> dom ( x e. B |-> C ) ~<_ B ) |
21 |
|
domtr |
|- ( ( dom ( x e. B |-> C ) ~<_ B /\ B ~<_ _om ) -> dom ( x e. B |-> C ) ~<_ _om ) |
22 |
20 21
|
mpancom |
|- ( B ~<_ _om -> dom ( x e. B |-> C ) ~<_ _om ) |
23 |
|
domtr |
|- ( ( ran ( x e. B |-> C ) ~<_ dom ( x e. B |-> C ) /\ dom ( x e. B |-> C ) ~<_ _om ) -> ran ( x e. B |-> C ) ~<_ _om ) |
24 |
17 22 23
|
syl2anc |
|- ( B ~<_ _om -> ran ( x e. B |-> C ) ~<_ _om ) |