Step |
Hyp |
Ref |
Expression |
1 |
|
df-inr |
|- inr = ( x e. _V |-> <. 1o , x >. ) |
2 |
|
opeq2 |
|- ( x = X -> <. 1o , x >. = <. 1o , X >. ) |
3 |
|
elex |
|- ( X e. V -> X e. _V ) |
4 |
|
opex |
|- <. 1o , X >. e. _V |
5 |
4
|
a1i |
|- ( X e. V -> <. 1o , X >. e. _V ) |
6 |
1 2 3 5
|
fvmptd3 |
|- ( X e. V -> ( inr ` X ) = <. 1o , X >. ) |
7 |
6
|
fveq2d |
|- ( X e. V -> ( 1st ` ( inr ` X ) ) = ( 1st ` <. 1o , X >. ) ) |
8 |
|
1oex |
|- 1o e. _V |
9 |
|
op1stg |
|- ( ( 1o e. _V /\ X e. V ) -> ( 1st ` <. 1o , X >. ) = 1o ) |
10 |
8 9
|
mpan |
|- ( X e. V -> ( 1st ` <. 1o , X >. ) = 1o ) |
11 |
7 10
|
eqtrd |
|- ( X e. V -> ( 1st ` ( inr ` X ) ) = 1o ) |