Metamath Proof Explorer


Theorem 1strwun

Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses 1str.g
|- G = { <. ( Base ` ndx ) , B >. }
1strwun.u
|- ( ph -> U e. WUni )
1strwun.o
|- ( ph -> _om e. U )
Assertion 1strwun
|- ( ( ph /\ B e. U ) -> G e. U )

Proof

Step Hyp Ref Expression
1 1str.g
 |-  G = { <. ( Base ` ndx ) , B >. }
2 1strwun.u
 |-  ( ph -> U e. WUni )
3 1strwun.o
 |-  ( ph -> _om e. U )
4 df-base
 |-  Base = Slot 1
5 2 3 wunndx
 |-  ( ph -> ndx e. U )
6 4 2 5 wunstr
 |-  ( ph -> ( Base ` ndx ) e. U )
7 1 2 6 1strwunbndx
 |-  ( ( ph /\ B e. U ) -> G e. U )