| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elvv |
|- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
| 2 |
|
vex |
|- x e. _V |
| 3 |
|
vex |
|- y e. _V |
| 4 |
2 3
|
op1st |
|- ( 1st ` <. x , y >. ) = x |
| 5 |
2 3
|
op1stb |
|- |^| |^| <. x , y >. = x |
| 6 |
4 5
|
eqtr4i |
|- ( 1st ` <. x , y >. ) = |^| |^| <. x , y >. |
| 7 |
|
fveq2 |
|- ( A = <. x , y >. -> ( 1st ` A ) = ( 1st ` <. x , y >. ) ) |
| 8 |
|
inteq |
|- ( A = <. x , y >. -> |^| A = |^| <. x , y >. ) |
| 9 |
8
|
inteqd |
|- ( A = <. x , y >. -> |^| |^| A = |^| |^| <. x , y >. ) |
| 10 |
6 7 9
|
3eqtr4a |
|- ( A = <. x , y >. -> ( 1st ` A ) = |^| |^| A ) |
| 11 |
10
|
exlimivv |
|- ( E. x E. y A = <. x , y >. -> ( 1st ` A ) = |^| |^| A ) |
| 12 |
1 11
|
sylbi |
|- ( A e. ( _V X. _V ) -> ( 1st ` A ) = |^| |^| A ) |