Metamath Proof Explorer


Theorem 1to3vfriendship

Description: The friendship theorem for small graphs: In every friendship graph with one, two or three vertices, there is a vertex which is adjacent to all other vertices. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v
|- V = ( Vtx ` G )
3vfriswmgr.e
|- E = ( Edg ` G )
Assertion 1to3vfriendship
|- ( ( A e. X /\ ( V = { A } \/ V = { A , B } \/ V = { A , B , C } ) ) -> ( G e. FriendGraph -> E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) )

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v
 |-  V = ( Vtx ` G )
2 3vfriswmgr.e
 |-  E = ( Edg ` G )
3 1 2 1to3vfriswmgr
 |-  ( ( A e. X /\ ( V = { A } \/ V = { A , B } \/ V = { A , B , C } ) ) -> ( G e. FriendGraph -> E. v e. V A. w e. ( V \ { v } ) ( { w , v } e. E /\ E! x e. ( V \ { v } ) { w , x } e. E ) ) )
4 prcom
 |-  { w , v } = { v , w }
5 4 eleq1i
 |-  ( { w , v } e. E <-> { v , w } e. E )
6 5 biimpi
 |-  ( { w , v } e. E -> { v , w } e. E )
7 6 adantr
 |-  ( ( { w , v } e. E /\ E! x e. ( V \ { v } ) { w , x } e. E ) -> { v , w } e. E )
8 7 ralimi
 |-  ( A. w e. ( V \ { v } ) ( { w , v } e. E /\ E! x e. ( V \ { v } ) { w , x } e. E ) -> A. w e. ( V \ { v } ) { v , w } e. E )
9 8 reximi
 |-  ( E. v e. V A. w e. ( V \ { v } ) ( { w , v } e. E /\ E! x e. ( V \ { v } ) { w , x } e. E ) -> E. v e. V A. w e. ( V \ { v } ) { v , w } e. E )
10 3 9 syl6
 |-  ( ( A e. X /\ ( V = { A } \/ V = { A , B } \/ V = { A , B , C } ) ) -> ( G e. FriendGraph -> E. v e. V A. w e. ( V \ { v } ) { v , w } e. E ) )