Step |
Hyp |
Ref |
Expression |
1 |
|
unit.1 |
|- U = ( Unit ` R ) |
2 |
|
unit.2 |
|- .1. = ( 1r ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 2
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
5 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
6 |
3 5
|
dvdsrid |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> .1. ( ||r ` R ) .1. ) |
7 |
4 6
|
mpdan |
|- ( R e. Ring -> .1. ( ||r ` R ) .1. ) |
8 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
9 |
8
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
10 |
8 3
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
11 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
12 |
10 11
|
dvdsrid |
|- ( ( ( oppR ` R ) e. Ring /\ .1. e. ( Base ` R ) ) -> .1. ( ||r ` ( oppR ` R ) ) .1. ) |
13 |
9 4 12
|
syl2anc |
|- ( R e. Ring -> .1. ( ||r ` ( oppR ` R ) ) .1. ) |
14 |
1 2 5 8 11
|
isunit |
|- ( .1. e. U <-> ( .1. ( ||r ` R ) .1. /\ .1. ( ||r ` ( oppR ` R ) ) .1. ) ) |
15 |
7 13 14
|
sylanbrc |
|- ( R e. Ring -> .1. e. U ) |