| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unit.1 |
|- U = ( Unit ` R ) |
| 2 |
|
unit.2 |
|- .1. = ( 1r ` R ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
3 2
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 5 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
| 6 |
3 5
|
dvdsrid |
|- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> .1. ( ||r ` R ) .1. ) |
| 7 |
4 6
|
mpdan |
|- ( R e. Ring -> .1. ( ||r ` R ) .1. ) |
| 8 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 9 |
8
|
opprring |
|- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
| 10 |
8 3
|
opprbas |
|- ( Base ` R ) = ( Base ` ( oppR ` R ) ) |
| 11 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
| 12 |
10 11
|
dvdsrid |
|- ( ( ( oppR ` R ) e. Ring /\ .1. e. ( Base ` R ) ) -> .1. ( ||r ` ( oppR ` R ) ) .1. ) |
| 13 |
9 4 12
|
syl2anc |
|- ( R e. Ring -> .1. ( ||r ` ( oppR ` R ) ) .1. ) |
| 14 |
1 2 5 8 11
|
isunit |
|- ( .1. e. U <-> ( .1. ( ||r ` R ) .1. /\ .1. ( ||r ` ( oppR ` R ) ) .1. ) ) |
| 15 |
7 13 14
|
sylanbrc |
|- ( R e. Ring -> .1. e. U ) |