Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
|- P = <" X Y "> |
2 |
|
1wlkd.f |
|- F = <" J "> |
3 |
|
1wlkd.x |
|- ( ph -> X e. V ) |
4 |
|
1wlkd.y |
|- ( ph -> Y e. V ) |
5 |
|
1wlkd.l |
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
6 |
|
1wlkd.j |
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
7 |
|
1wlkd.v |
|- V = ( Vtx ` G ) |
8 |
|
1wlkd.i |
|- I = ( iEdg ` G ) |
9 |
1 2 3 4 5 6
|
1wlkdlem3 |
|- ( ph -> F e. Word dom I ) |
10 |
1 2 3 4
|
1wlkdlem1 |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
11 |
1 2 3 4 5 6
|
1wlkdlem4 |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
12 |
7
|
1vgrex |
|- ( X e. V -> G e. _V ) |
13 |
7 8
|
iswlkg |
|- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
14 |
3 12 13
|
3syl |
|- ( ph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
15 |
9 10 11 14
|
mpbir3and |
|- ( ph -> F ( Walks ` G ) P ) |