Metamath Proof Explorer


Theorem 1wlkdlem3

Description: Lemma 3 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p
|- P = <" X Y ">
1wlkd.f
|- F = <" J ">
1wlkd.x
|- ( ph -> X e. V )
1wlkd.y
|- ( ph -> Y e. V )
1wlkd.l
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } )
1wlkd.j
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) )
Assertion 1wlkdlem3
|- ( ph -> F e. Word dom I )

Proof

Step Hyp Ref Expression
1 1wlkd.p
 |-  P = <" X Y ">
2 1wlkd.f
 |-  F = <" J ">
3 1wlkd.x
 |-  ( ph -> X e. V )
4 1wlkd.y
 |-  ( ph -> Y e. V )
5 1wlkd.l
 |-  ( ( ph /\ X = Y ) -> ( I ` J ) = { X } )
6 1wlkd.j
 |-  ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) )
7 1 2 3 4 5 6 1wlkdlem2
 |-  ( ph -> X e. ( I ` J ) )
8 elfvdm
 |-  ( X e. ( I ` J ) -> J e. dom I )
9 s1cl
 |-  ( J e. dom I -> <" J "> e. Word dom I )
10 2 9 eqeltrid
 |-  ( J e. dom I -> F e. Word dom I )
11 7 8 10 3syl
 |-  ( ph -> F e. Word dom I )