Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
|- P = <" X Y "> |
2 |
|
1wlkd.f |
|- F = <" J "> |
3 |
|
1wlkd.x |
|- ( ph -> X e. V ) |
4 |
|
1wlkd.y |
|- ( ph -> Y e. V ) |
5 |
|
1wlkd.l |
|- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
6 |
|
1wlkd.j |
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
7 |
2
|
fveq1i |
|- ( F ` 0 ) = ( <" J "> ` 0 ) |
8 |
1 2 3 4 5 6
|
1wlkdlem2 |
|- ( ph -> X e. ( I ` J ) ) |
9 |
8
|
elfvexd |
|- ( ph -> J e. _V ) |
10 |
|
s1fv |
|- ( J e. _V -> ( <" J "> ` 0 ) = J ) |
11 |
9 10
|
syl |
|- ( ph -> ( <" J "> ` 0 ) = J ) |
12 |
7 11
|
syl5eq |
|- ( ph -> ( F ` 0 ) = J ) |
13 |
12
|
fveq2d |
|- ( ph -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ X = Y ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
15 |
14 5
|
eqtrd |
|- ( ( ph /\ X = Y ) -> ( I ` ( F ` 0 ) ) = { X } ) |
16 |
|
df-ne |
|- ( X =/= Y <-> -. X = Y ) |
17 |
16 6
|
sylan2br |
|- ( ( ph /\ -. X = Y ) -> { X , Y } C_ ( I ` J ) ) |
18 |
13
|
adantr |
|- ( ( ph /\ -. X = Y ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
19 |
17 18
|
sseqtrrd |
|- ( ( ph /\ -. X = Y ) -> { X , Y } C_ ( I ` ( F ` 0 ) ) ) |
20 |
15 19
|
ifpimpda |
|- ( ph -> if- ( X = Y , ( I ` ( F ` 0 ) ) = { X } , { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) |
21 |
1
|
fveq1i |
|- ( P ` 0 ) = ( <" X Y "> ` 0 ) |
22 |
|
s2fv0 |
|- ( X e. V -> ( <" X Y "> ` 0 ) = X ) |
23 |
3 22
|
syl |
|- ( ph -> ( <" X Y "> ` 0 ) = X ) |
24 |
21 23
|
syl5eq |
|- ( ph -> ( P ` 0 ) = X ) |
25 |
1
|
fveq1i |
|- ( P ` 1 ) = ( <" X Y "> ` 1 ) |
26 |
|
s2fv1 |
|- ( Y e. V -> ( <" X Y "> ` 1 ) = Y ) |
27 |
4 26
|
syl |
|- ( ph -> ( <" X Y "> ` 1 ) = Y ) |
28 |
25 27
|
syl5eq |
|- ( ph -> ( P ` 1 ) = Y ) |
29 |
|
eqeq12 |
|- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( ( P ` 0 ) = ( P ` 1 ) <-> X = Y ) ) |
30 |
|
sneq |
|- ( ( P ` 0 ) = X -> { ( P ` 0 ) } = { X } ) |
31 |
30
|
adantr |
|- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> { ( P ` 0 ) } = { X } ) |
32 |
31
|
eqeq2d |
|- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } <-> ( I ` ( F ` 0 ) ) = { X } ) ) |
33 |
|
preq12 |
|- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> { ( P ` 0 ) , ( P ` 1 ) } = { X , Y } ) |
34 |
33
|
sseq1d |
|- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) |
35 |
29 32 34
|
ifpbi123d |
|- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( X = Y , ( I ` ( F ` 0 ) ) = { X } , { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) ) |
36 |
24 28 35
|
syl2anc |
|- ( ph -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( X = Y , ( I ` ( F ` 0 ) ) = { X } , { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) ) |
37 |
20 36
|
mpbird |
|- ( ph -> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
38 |
|
c0ex |
|- 0 e. _V |
39 |
|
oveq1 |
|- ( k = 0 -> ( k + 1 ) = ( 0 + 1 ) ) |
40 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
41 |
39 40
|
eqtrdi |
|- ( k = 0 -> ( k + 1 ) = 1 ) |
42 |
|
wkslem2 |
|- ( ( k = 0 /\ ( k + 1 ) = 1 ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
43 |
41 42
|
mpdan |
|- ( k = 0 -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
44 |
38 43
|
ralsn |
|- ( A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
45 |
37 44
|
sylibr |
|- ( ph -> A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
46 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" J "> ) |
47 |
|
s1len |
|- ( # ` <" J "> ) = 1 |
48 |
46 47
|
eqtri |
|- ( # ` F ) = 1 |
49 |
48
|
oveq2i |
|- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 1 ) |
50 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
51 |
49 50
|
eqtri |
|- ( 0 ..^ ( # ` F ) ) = { 0 } |
52 |
51
|
a1i |
|- ( ph -> ( 0 ..^ ( # ` F ) ) = { 0 } ) |
53 |
52
|
raleqdv |
|- ( ph -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
54 |
45 53
|
mpbird |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |